×

Translation surfaces and their orbit closures: an introduction for a broad audience. (English) Zbl 1372.37090

This is an excellent survey and snapshot of the extremely active field of renormalization (i.e., \(\mathrm{GL}(2, \mathbb R)\)) dynamics on the space of translation surfaces. It gives clear motivating examples, elucidates connections to homogenous dynamics, algebraic geometry, and gives a clear introduction to the exciting new developments in the field.

MSC:

37F30 Quasiconformal methods and Teichmüller theory, etc. (dynamical systems) (MSC2010)
32G15 Moduli of Riemann surfaces, Teichmüller theory (complex-analytic aspects in several variables)
30F30 Differentials on Riemann surfaces
30D05 Functional equations in the complex plane, iteration and composition of analytic functions of one complex variable
30F60 Teichmüller theory for Riemann surfaces
14H55 Riemann surfaces; Weierstrass points; gap sequences

References:

[1] A. Avila, A. Eskin, and M. Möller, Symplectic and Isometric SL.2; R/-invariant subbundles of the Hodge bundle, preprint,
[2] D. Aulicino, D.-M. Nguyen, and A. Wright, Classification of higher rank orbit closures in Hodd.4/, preprint, to appear in Geom. Topol., · Zbl 1369.37044
[3] M. Bainbridge, Euler characteristics of Teichmüller curves in genus two, Geom. Topol. 11 (2007), 1887-2073. · Zbl 1131.32007 · doi:10.2140/gt.2007.11.1887
[4] I. I. Bouw and M. Möller, Teichmüller curves, triangle groups, and Lyapunov exponents, Ann. of Math. (2) 172 (2010), no. 1, 139-185. · Zbl 1203.37049 · doi:10.4007/annals.2010.172.139
[5] M. Bainbridge and M. Möller, The Deligne-Mumford compactification of the real multi- plication locus and Teichmüller curves in genus 3, Acta Math. 208 (2012), no. 1, 1-92. · Zbl 1250.14014 · doi:10.1007/s11511-012-0074-6
[6] K. Calta, Veech surfaces and complete periodicity in genus two, J. Amer. Math. Soc. 17 (2004), no. 4, 871-908. · Zbl 1073.37032 · doi:10.1090/S0894-0347-04-00461-8
[7] P. Deligne, Un théorème de finitude pour la monodromie in Discrete groups in geometry and analysis (New Haven, Conn., 1984), Progr. Math., vol. 67, Birkhäuser Boston, Boston, MA, 1987, pp. 1-19. · Zbl 0656.14010
[8] T. A. Driscoll and L. N. Trefethen, Schwarz-Christoffel mapping, Cambridge Monographs on Applied and Computational Mathematics, vol. 8, Cambridge University Press, Cambridge, 2002. · Zbl 1003.30005 · doi:10.1017/CBO9780511546808
[9] A. Eskin and M. Mirzakhani, Invariant and stationary measures for the SL.2; R/ action on moduli space, preprint, · Zbl 1357.37040
[10] A. Eskin, M. Mirzakhani, and A. Mohammadi, Isolation theorems for SL.2; R/-invariant submanifolds in moduli space, preprint, · Zbl 1357.37040
[11] A. Eskin, M. Mirzakhani, and K. Rafi, Counting closed geodesics in strata, preprint,
[12] A. Eskin, Counting problems in moduli space in Handbook of dynamical systems. Vol. 1B, Elsevier B. V., Amsterdam, 2006, pp. 581-595. · Zbl 1130.37300
[13] S. Filip, Semisimplicity and rigidity of the Kontsevich-Zorich cocycle, preprint, · Zbl 1368.14013
[14] S. Filip, Splitting mixed Hodge structures over affine invariant manifolds, preprint, · Zbl 1342.14015
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.