×

Small deviations of stable processes and entropy of the associated random operators. (English) Zbl 1214.60019

The authors investigate relations between the small deviation problem for a symmetric \(\alpha\)-stable random vector in Banach space and the metric entropy properties of the operator generating this random vector. Let \(E\) be a Banach space with the norm \(\|\cdot\|_E\) and let \(E'\) be the (topological) dual space with the weak-*-topology and the corresponding \(\sigma\)-field \({\mathcal B}_{\sigma}(E')\). A measurable with respect to this \(\sigma\)-field \(E'\)-valued random vector on \((\Omega,\mathbb P)\) is said to be symmetric \(\alpha\)-stable (\(S\alpha S\)) for some \(\alpha\in (0, 2]\) if there exist a measure space \((S,\sigma)\) and a bounded linear operator \(u:E\to L_{\alpha}(S,\sigma)\) (called generator of \(X\)) such that \({\mathbb E}e^{i<z,X>}=e^{-\|u\|_{\alpha}^{\alpha}}\), \(z\in E\). A symmetric 2-stable vector is centered Gaussian. In this case, there exist tight relations between the degree of compactness of \(u:E\to L_2\) and small deviation properties of the generated random vector \(X\). The small deviation function of an \(E'\)-valued random vector \(X\) is introduced as \(\varphi(X,\varepsilon):=-\log{\mathbb P}(\|X\|_{E'}<\varepsilon)\) To measure the degree of compactness of the corresponding operator \(u\) the dyadic entropy numbers are used defined as follows: if \(u\) is a bounded linear operator between the Banach spaces \(E\) and \(F\), then \[ e_n(u):=\inf\{ \varepsilon>0|\exists y_1,\dots,y_{2^{n-1}}\in F,\forall z\in E,\|z\|\leq1, \exists i\leq 2^{n-1},\|u(z)-y_i\|\leq\varepsilon\} \] Their behaviour as \(n=\to\infty\) describes the degree of compactness of \(u\). Let us establish some more notation. We write \(f\precsim g\) if \(\lim\sup(f/g)<\infty\), the equivalence \(f\approx g\) means that we have both \(f\precsim g\) and \(g\precsim f\), \(f\lesssim g\) indicate that \(\lim\sup(f/g)<1\), the strong equivalence \(f\sim g\) means that \(\lim(f/g)=1\). Using this notation, we can now state the relations between properties of \(X\) and the generating operator \(u\) in the Gaussian case (see J. Kuelbs and W. V. Li [J. Funct. Anal. 116, No.1, 133–157 (1993; Zbl 0799.46053)]; W. V. Li and W. Linde [Ann. Probab. 27, No.3, 1556–1578 (1999; Zbl 0983.60026)]).
Proposition 1. Let \(X\) be an \(E'\)-valued Gaussian vector generated by the operator \(u:E\to\ell_2\). Let \(\tau>0\) and let \(L\) be a slowly varying function at infinity such that \(L(t)\approx L(t^p)\) for all \(p>0\). The following implications then hold:
(a) we have \[ e_n(u)\succsim n^{-1/2-1/\tau}L(u)\quad \Leftrightarrow \quad \varphi(X,\varepsilon) \succsim{\varepsilon}^{-\tau}L(1/\varepsilon)^{\tau}, \] where, for \(``\Leftarrow"\) the additional assumption \(\varphi(X,\varepsilon)\approx \varphi(X,2\varepsilon)\) is required;
(b) we have \[ e_n(u)\precsim n^{-1/2-1/\tau}L(u)\quad \Leftrightarrow \quad \varphi(X,\varepsilon) \precsim{\varepsilon}^{-\tau}L(1/\varepsilon)^{\tau}. \] In the case of the non-Gaussian symmetric \(\alpha\)-stable vectors the following result is known (see W. V. Li and W. Linde [J. Theor. Probab. 17, No. 1, 261–284 (2004; Zbl 1057.60047)]; F. Aurzada [Probab. Math. Stat. 27, No. 2, 261–274 (2007; Zbl 1136.60033)])
Proposition 2. Let \(X\) be an \(E'\)-valued symmetric \(\alpha\)-stable vector generated by the operator \(u:E\to L_{\alpha}(S,\sigma)\). Let \(\tau>0\) and let \(\theta\in\mathbb R\) be given, where, in addition, \(\tau<\alpha/(1-\alpha)\) for \(0<\alpha<1\). Then:
\[ (a)\quad e_n(u)\succsim n^{1/\alpha-1/\tau-1}(\log{n})^{\theta/\tau} \quad \Rightarrow \quad \varphi(X,\varepsilon) \succsim{\varepsilon}^{-\tau} (-\log{\varepsilon})^{\theta}; \]
\[ (b)\quad \varphi(X,\varepsilon) \precsim{\varepsilon}^{-\tau} (-\log{\varepsilon})^{\theta} \quad \Rightarrow \quad e_n(u)\precsim n^{1/\alpha-1/\tau-1}(\log{n})^{\theta/\tau}; \] the respective converse in the above implications does not hold in general.
This result shows that, unfortunately, only two of the four implications from Proposition 1 can be transferred to the non-Gaussian case. In particular, probably the most interesting and useful implication (upper estimates for \(e_n (u)\) yield those for \(\varphi(X,\varepsilon)\)) is not valid in general. The basic goal of this article is to investigate this implication more thoroughly. The main result of this paper is the following.
Theorem 1.3. Let a symmetric \(\alpha\)-stable \(E'\)-valued vector \(X\) be generated by an operator \(u:E\to L_{\alpha}(S,\sigma)\), where \(\sigma(S)<\infty\). Suppose that \(u\) maps \(E\) even into \(L_{\infty}(S,\sigma)\) and that \[ e_n(u_{\infty})=e_n(u:E\to L_{\infty}) \precsim n^{1/\alpha-1/\tau-1}L(n) \] for some \(\tau>0\) and some slowly varying function \(L\) such that \(L(t)\approx L(t^p)\) for all \(p>0\). Then, \[ \varphi(X,\varepsilon) \precsim{\varepsilon}^{-\tau} L(1/{\varepsilon})^{\tau}. \] This theorem gives new estimates for the small deviation rate for several examples of symmetric \(\alpha\)-stable processes, including unbounded Riemann-Liouville processes, weighted Riemann-Liouville processes and the (\(d\)-dimensional) \(\alpha\)-stable sheet.

MSC:

60G52 Stable stochastic processes
60F10 Large deviations
60G15 Gaussian processes

References:

[1] Artstein, S., Milman, V. and Szarek, S.J. (2004). Duality of metric entropy. Ann. of Math. 159 1313-1328. · Zbl 1072.52001 · doi:10.4007/annals.2004.159.1313
[2] Aurzada, F. (2007a). On the lower tail probabilities of some random sequences in l p . J. Theoret. Probab. 20 843-858. · Zbl 1140.60012 · doi:10.1007/s10959-007-0095-9
[3] Aurzada, F. (2007b). Metric entropy and the small deviation problem for stable processes. Probab. Math. Statist. 27 261-274. · Zbl 1136.60033
[4] Aurzada, F. and Simon, T. (2007). Small ball probabilities for stable convolutions. ESAIM Probab. Stat. 11 327-343. · Zbl 1184.60010 · doi:10.1051/ps:2007022
[5] Aurzada, F. and Lifshits, M. (2008). Small deviation probability via chaining. Stochastic Process. Appl. 118 2344-2368. · Zbl 1155.60013 · doi:10.1016/j.spa.2008.01.005
[6] Belinsky, E.S. (1998). Estimates of entropy numbers and Gaussian measures for classes of functions with bounded mixed derivative. J. Approx. Theory 93 114-127. · Zbl 0904.41016 · doi:10.1006/jath.1997.3157
[7] Borovkov, A.A. and Mogul’skiĭ, A.A. (1991). On probabilities of small deviations for stochastic processes. Siberian Adv. Math. 1 39-63. · Zbl 0718.60024
[8] Carl, B. and Stephani, I. (1990). Entropy, Compactness and the Approximation of Operators. Cambridge Tracts in Mathematics 98 . Cambridge: Cambridge Univ. Press. · Zbl 0705.47017
[9] Dunker, T., Kühn, T., Lifshits, M.A. and Linde, W. (1999). Metric entropy of integration operators and small ball probabilities for the Brownian sheet. J. Approx. Theory 101 63-77. · Zbl 0945.47022 · doi:10.1006/jath.1999.3354
[10] Kühn, T. (2005). Entropy numbers of general diagonal operators. Rev. Mat. Complut. 18 479-491. · Zbl 1093.47020
[11] Kuelbs, J. and Li, W.V. (1993). Metric entropy and the small ball problem for Gaussian measures. J. Funct. Anal. 116 133-157. · Zbl 0799.46053 · doi:10.1006/jfan.1993.1107
[12] Li, W.V. and Linde, W. (1999). Approximation, metric entropy and small ball estimates for Gaussian measures. Ann. Probab. 27 1556-1578. · Zbl 0983.60026 · doi:10.1214/aop/1022677459
[13] Li, W.V. and Linde, W. (2004). Small deviations of stable processes via metric entropy. J. Theoret. Probab. 17 261-284. · Zbl 1057.60047 · doi:10.1023/B:JOTP.0000020484.26184.c4
[14] Lifshits, M.A. and Linde, W. (2002). Approximation and entropy of Volterra operators with application to Brownian motion. Mem. Amer. Math. Soc. 745 1-87. · Zbl 0999.47034
[15] Lifshits, M.A. and Simon, T. (2005). Small deviations for fractional stable processes. Ann. Inst. H. Poincaré Probab. Statist. 41 725-752. · Zbl 1070.60042 · doi:10.1016/j.anihpb.2004.05.004
[16] Linde, W. (1986). Probability in Banach Spaces - Stable and Infinitely Divisible Distributions . Chichester: Wiley. · Zbl 0665.60005
[17] Marcus, M.B. and Pisier, G. (1984). Characterizations of almost surely continuous p -stable random Fourier series and strongly stationary processes. Acta Math. 152 245-301. · Zbl 0547.60047 · doi:10.1007/BF02392199
[18] Mogul’skiĭ, A.A. (1974). Small deviations in a space of trajectories. Theory Probab. Appl. 19 726-736 (Russian), 755-765 (English). · Zbl 0326.60061
[19] Ryznar, M. (1986). Asymptotic behaviour of stable seminorms near the origin. Ann. Probab. 14 287-298. · Zbl 0591.60007 · doi:10.1214/aop/1176992628
[20] Sztencel, R. (1984). On the lower tail of stable seminorms. Bull. Pol. Acad. Sci. Math. 32 715-719. · Zbl 0558.60020
[21] Samorodnitsky, G. and Taqqu, M.S. (1994). Stable non-Gaussian Random Processes . New York: Chapman & Hall. · Zbl 0925.60027
[22] Tortrat, A. (1976). Lois e( \lambda ) dans les espaces vectoriels et lois stables. Z. Wahrsch. Verw. Gebiete 37 175-182. · Zbl 0335.60013 · doi:10.1007/BF00536779
[23] Vakhania, N.N., Tarieladze, V.I. and Chobanjan, S.A. (1985). Probability Distributions in Banach Spaces . Moscow: Nauka. · Zbl 0572.60003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.