×

On probabilities of small deviations for stochastic processes. (English. Russian original) Zbl 0718.60024

Sib. Adv. Math. 1, No. 1, 39-63 (1991); translation from Tr. Inst. Mat. 13, 147-168 (1989).
See the review in Zbl 0708.60029.

MSC:

60F10 Large deviations
60F17 Functional limit theorems; invariance principles
60G15 Gaussian processes
60J65 Brownian motion
Full Text: DOI

References:

[1] A. A. Borovkov, ”Boundary-value problems for random walks and large deviations in function spaces,” Teor. Veroyatnost. i Primenen. 12, 635 (1967) [Theory Probab. Appl. 12, 575 (1967)]. · Zbl 0178.20004
[2] A. A. Borovkov, Probability Theory (Librokom, Moscow, 2009; Springer, London, 2013).
[3] A. A. Borovkov and K. A. Borovkov, Asymptotic Analysis of Random Walks. Vol. I: Slowly Decreasing Jump Distributions. (Fizmatlit, Moscow, 2008) [in Russian]. · Zbl 1231.60001
[4] A. A. Borovkov and A. A. Mogul’skiĭ, ”Integro-local and integral theorems for sums of random variables with semiexponential distributions,” Sibirsk. Mat. Zh. 47, 1218 (2006) [Siberian Math. J. 47, 990 (2010)]. · Zbl 1150.60021
[5] A. A. Borovkov and A. A. Mogul’skiĭ, ”On large deviation principles in metric spaces,” Sibirsk. Mat. Zh. 51, 1251 (2010) [Siberian Math. J. 51, 989 (2010)]. · Zbl 1225.60051
[6] A. A. Borovkov and A. A. Mogul’skiĭ, ”Chebyshev-type exponential inequalities for sums of random vectors and for trajectories of random walks,” Teor. Veroyatnost. i Primenen. 56, 3 (2011) [Theory Probab. Appl., 56, 21 (2012)]. · doi:10.4213/tvp4321
[7] A. A. Borovkov and A. A. Mogul’skiĭ, ”Large deviation principles for random walk trajectories,” I: Teor. Veroyatnost. i Primenen. 56, 627 (2011) [Theory Probab. Appl. 56, 538 (2012)]; II: Teor. Veroyatnost. i Primenen. 57, 3 (2012) [Theory Probab. Appl. 57, 1 (2013)]; III: Teor. Veroyatnost. i Primenen. 58, 37 (2013) [Theory Probab. Appl. 58, 25 (2014)]. · doi:10.4213/tvp4415
[8] A. A. Borovkov and A. A. Mogul’skiĭ, ”Moderately large deviation principles for trajectories of random walks and processes with independent increments,” Teor. Veroyatnost. i Primenen. 58, 648 (2013). · Zbl 1340.60020 · doi:10.4213/tvp4534
[9] I. A. Ibragimov and Yu. V. Linnik, Independent and stationary sequences of random variables (Nauka, Moscow, 1975; Wolters-Noordhoff Publishing, Groningen, 1971). · Zbl 0219.60027
[10] T. Mikosh and A. V. Nagaev ”Large deviations of heavy-tailed sums with applications in insurance,” Extremes 1, 81 (1998). · Zbl 0927.60037 · doi:10.1023/A:1009913901219
[11] A. A. Mogul’skiĭ, ”Large deviations for trajectories of multi-dimensional random walks,” Teor. Veroyatnost. i Primenen. 21, 309 (1976) [Theory Probab. Appl. 21, 300 (1977)].
[12] A. V. Nagaev, ”Integral limit theorems taking large deviations into account when Cramer’s condition does not hold,” I: Teor. Veroyatnost. i Primenen. 14, 51 (1969) [Theory Probab. Appl. 14, 51 (1969)]; II: Teor. Veroyatnost. i Primenen. 14, 203 (1969) [Theory Probab. Appl. 14, 193 (1969)]. · Zbl 0181.45004
[13] S. V. Nagaev, ”Some limit theorems for large deviations,” Teor. Veroyatnost. i Primenen. 10, 231 (1965). [Theory Probab. Appl. 10, 214 (1965)]. · Zbl 0144.18704
[14] V. V. Petrov, ”Limit theorems for large deviations violating Cramer’s condition. I,” Vestnik Leningrad. Univ. Ser. Mat. Meh. Astronom. No. 19, 49 (1963).
[15] L. V. Rozovskii, ”Probabilities of large deviations on the whole axis,” Teor. Veroyatnost. i Primenen. 38, 79 (1993). [Theory Probab. Appl. 38, 53 (1994)].
[16] L. Saulis and V. Staulevečius, Limit Theorems for Large Deviations (Mokslas, Vilnius, 1989; Kluwer, Dordrecht, 1991). · Zbl 0714.60018
[17] C. Stone, ”On local and ratio limit theorems,” Proc. Fifth Berkeley Sympos. Math. Statist. and Probability. Berkeley (Berkeley, Calif., 1965/66), V. II: Contributions to Probability Theory, Part 2, 217 (Univ. California Press, Berkeley, Calif., 1965/1966).
[18] S. R. S. Varadhan, ”Asymptotic probabilities and differential equations,” Comm. Pure Appl. Math. 19, 261 (1966). · Zbl 0147.15503 · doi:10.1002/cpa.3160190303
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.