×

Configurations of noncollinear points in the projective plane. (English) Zbl 1476.55039

The authors consider the space \(F_n\) of configurations of ordered \(n\) points in \(\mathbb{CP}^2\) satisfying the condition that no three of the points lie on a line. The symmetric group \(\mathfrak{S}\) acts on \(F_n\) by permuting coordinates, and the authors look at the quotient \(B_n:=F_n/\mathfrak{S}_n\).
The main results of this paper are to compute \(H^*(F_n;\mathbb{Q})\) and \(H^*(B_n;\mathbb{Q})\) for \(n=4, 5\) and \(n=6\). To determine \(H^*(B_n;\mathbb{Q})\), the authors determine \(H^i(F_n;\mathbb{Q})\) as an \(\mathfrak{S}\)-representation and use transfer.
The space \(F_n\) also comes equipped with a natural action of \(PGL_3(\mathbb{C})\), and denote the quotient by \(X_n\). In fact, \(F_n\cong PGL_3(\mathbb{C})\times X_n.\) The authors show that \(H^*(F_n)\cong H^*(PGL_3(\mathbb{C}))\otimes H^*(X_n)\) is true as representations of \(\mathfrak{S}_n\).
Below, \(U\) and \(V\) stand for the trivial and fundamental representations, respectively, of either \(\mathfrak{S}_5\) or \(\mathfrak{S}_6\). Other irreducibles are subscripted by the corresponding partitions. The authors also use the convention that \(H^{\mathbb{P}^1}\) has weight 1.
Theorem 1.1 With terminology as above and as \(\mathfrak{S}_6\)-representations, \[ H^*(X_6;\mathbb{Q})\cong \begin{cases} U &\text{ if } *=0,\\ S_{3,3}\oplus S_{4,2} &\text{ if }*=1,\\ V\oplus \wedge^2V^{\oplus 2}\oplus \wedge^3 V\oplus S_{3,3} \oplus S_{3,2,1}^{\oplus 2} &\text{ if }*=2\\ V\oplus \wedge^2 V^{\oplus 3}\oplus \wedge^3 V^{\oplus 3}\oplus S_{3,3}\oplus S_{2,2,2}\oplus S_{4,2}^{\oplus 2}\oplus S_{2,2,1,1}^{\oplus 2}\oplus S_{3,2,1}^{\oplus 3} &\text{ if }*=3,\\ U\oplus U^{'}\oplus V\oplus V^{'}\oplus \wedge^2 V\oplus \wedge^3 V^{\oplus 2}\oplus S_{3,3}^{\oplus 2}\oplus S_{2,2,2}^{\oplus 3}\oplus S_{4,2}^{\oplus 2}\oplus S_{2,2,1,1}\oplus S_{3,2,1}^{\oplus 3} &\text{ if }*=4\\ 0 &\text{ otherwise }\end{cases} \] For \(\mathfrak{S}_5\)-representations, the authors get the following
Remark 1.2 \[ H^*(X_5;\mathbb{Q})\cong \begin{cases} U &\text{ if }*=0,\\ S_{3,2} &\text{ if }*=1,\\ \wedge^2 V &\text{ if }*=2,\\ 0 &\text{ otherwise }\end{cases} \]
And for the \(H^*(B_n;\mathbb{Q})\), the authors obtain that
Corollary 1.3 With terminology as above, \[ H^*(B_5;\mathbb{Q})\cong H^*(PGL_3(\mathbb{C}))\cong \begin{cases} \mathbb{Q} &\text{ if }*=0,3,5,8\\ 0 &\text{ otherwise }\end{cases} \] \[ H^*(B_6;\mathbb{Q})\cong H^{*}(S^4\times PGL_3(\mathbb{C}))\cong \begin{cases} \mathbb{Q} &\text{ if }*=0,3,4,5,7,8,9,12\\ 0 &\text{ otherwise }\end{cases} \] The first isomorphism is induced by the orbit map and hence is an isomorphism of mixed Hodge structures. Similarly, the inclusion of \(H^*(PGL_3(\mathbb{C}))\) into \(H^*(B_6)\) preserves mixed Hodge structures, and the extra generator in \(H^4(B_6)\) has weight 4.
Other results about this configuration space of \(\mathbb{CP}^2\) can be seen in [S. Ashraf and B. Berceanu, Adv. Geom. 14, No. 4, 691–718 (2014; Zbl 1305.55009); Y. Feler, J. Eur. Math. Soc. (JEMS) 10, No. 3, 601–624 (2008; Zbl 1144.32010); V. L. Moulton, J. Pure Appl. Algebra 131, No. 3, 245–296 (1998; Zbl 0999.20027)]. More general configuration spaces of vector spaces and projective spaces can be seen in [J. Wang and X. Zhao, J. Knot Theory Ramifications 29, No. 13, Article ID 2043001, 20 p. (2020; Zbl 1510.55009)].
Reviewer: Jun Wang (Beijing)

MSC:

55R80 Discriminantal varieties and configuration spaces in algebraic topology
14F25 Classical real and complex (co)homology in algebraic geometry
14J10 Families, moduli, classification: algebraic theory

References:

[1] 10.1515/advgeom-2014-0008 · Zbl 1305.55009 · doi:10.1515/advgeom-2014-0008
[2] 10.1007/s40879-019-00332-9 · Zbl 1440.14145 · doi:10.1007/s40879-019-00332-9
[3] 10.1090/conm/620/12395 · doi:10.1090/conm/620/12395
[4] ; Deligne, Cohomologie étale (SGA 4). Lecture Notes in Math., 569 (1977) · Zbl 0345.00010
[5] 10.4171/JEMS/124 · Zbl 1144.32010 · doi:10.4171/JEMS/124
[6] 10.1016/0097-3165(88)90027-1 · Zbl 0661.51009 · doi:10.1016/0097-3165(88)90027-1
[7] 10.1007/s00022-017-0391-1 · Zbl 1398.51004 · doi:10.1007/s00022-017-0391-1
[8] 10.2307/2160458 · Zbl 0816.14008 · doi:10.2307/2160458
[9] 10.1006/jabr.2001.9029 · Zbl 1039.14005 · doi:10.1006/jabr.2001.9029
[10] 10.1112/blms/24.1.76 · Zbl 0770.14013 · doi:10.1112/blms/24.1.76
[11] ; Mnëv, Dokl. Akad. Nauk SSSR, 283, 1312 (1985)
[12] 10.1007/BFb0082792 · doi:10.1007/BFb0082792
[13] 10.1016/S0022-4049(98)00006-1 · Zbl 0999.20027 · doi:10.1016/S0022-4049(98)00006-1
[14] 10.2140/gt.2017.21.2527 · Zbl 1420.55027 · doi:10.2140/gt.2017.21.2527
[15] 10.1007/s00222-005-0481-9 · Zbl 1095.14006 · doi:10.1007/s00222-005-0481-9
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.