×

Cohomology of moduli spaces of del Pezzo surfaces. (English) Zbl 1535.14084

Summary: We compute the rational Betti cohomology groups of the coarse moduli spaces of geometrically marked Del Pezzo surfaces of degree 3 and 4 as representations of the Weyl groups of the corresponding root systems. The proof uses a blend of methods from point counting over finite fields and techniques from arrangement complements.
{© 2022 The Authors. Mathematische Nachrichten published by Wiley-VCH GmbH.}

MSC:

14J10 Families, moduli, classification: algebraic theory
14J26 Rational and ruled surfaces
05E18 Group actions on combinatorial structures
14F40 de Rham cohomology and algebraic geometry
14F20 Étale and other Grothendieck topologies and (co)homologies

References:

[1] B.Banwait, F.Fité, and D.Loughran, Del Pezzo surfaces over finite fields and their Frobenius traces, Math. Proc. Cambridge Philos. Soc.167 (2019), no. 1, 35-60. https://doi.org/10.1017/s0305004118000166. · Zbl 1442.14087 · doi:10.1017/s0305004118000166
[2] W. P.Barth, KHulek, C. A. M.Peters, and A.Van de Ven, Compact complex surfaces, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 4, 2nd ed, pp. xii+436, Springer‐Verlag, Berlin, 2004. https://doi.org/10.1007/978‐3‐642‐57739‐0. · Zbl 1036.14016 · doi:10.1007/978‐3‐642‐57739‐0
[3] O.Bergvall, Cohomology of complements of toric arrangements associated to root systems, Res. Math. Sci.9 (2022), no. 1. https://doi.org/10.1007/s40687-021-00305-z. · Zbl 1490.14087 · doi:10.1007/s40687-021-00305-z
[4] O.Bergvall, Cohomology of the toric arrangement associated with \(A_n\), J. Fixed Point Theory Appl.21 (2019), no. 1. https://doi.org/10.1007/s11784-018-0655-x · Zbl 1455.20026 · doi:10.1007/s11784-018-0655-x
[5] O.Bergvall, Equivariant cohomology of moduli spaces of genus three curves with level two structure, Geom. Dedicata202 (2019), 165-191. https://doi.org/10.1007/s10711‐018‐0407‐5. · Zbl 1423.14182 · doi:10.1007/s10711‐018‐0407‐5
[6] O.Bergvall, Equivariant cohomology of the moduli space of genus three curves with symplectic level two structure via point counts, Eur. J. Math.6 (2020), no. 2, 262-320. https://doi.org/10.1007/s40879‐019‐00332‐9. · Zbl 1440.14145 · doi:10.1007/s40879‐019‐00332‐9
[7] R. W.Carter, Finite groups of Lie type, Pure and Applied Mathematics (New York), pp. xii+544, John Wiley & Sons, Inc., New York, 1985. Conjugacy classes and complex characters, A Wiley‐Interscience Publication. · Zbl 0567.20023
[8] T.Connor and D.Leemans, An atlas of subgroup lattices of finite almost simple groups, Ars Math. Contemp.8 (2015), no. 2, 259-266. https://doi.org/10.26493/1855‐3974.455.422. · Zbl 1325.20019 · doi:10.26493/1855‐3974.455.422
[9] J. H.Conway, R. T.Curtis, S. P.Norton, R. A.Parker, and R. A.Wilson, Atlas of finite groups, pp. xxxiv+252, Oxford University Press, Eynsham, 1985. Maximal subgroups and ordinary characters for simple groups, with computational assistance from J. G. Thackray. · Zbl 0568.20001
[10] R.Das, The space of cubic surfaces equipped with a line, Math. Z.298 (2021), no. 1‐2, 653-670. https://doi.org/10.1007/s00209‐020‐02606‐5. · Zbl 1462.14038 · doi:10.1007/s00209‐020‐02606‐5
[11] R.Das and B.O’Connor, Configurations of noncollinear points in the projective plane, Algebr. Geom. Topol.21 (2021), no. 4, 1941-1972. https://doi.org/10.2140/agt.2021.21.1941. · Zbl 1476.55039 · doi:10.2140/agt.2021.21.1941
[12] P.Deligne and G.Lusztig, Representations of reductive groups over finite fields, Ann. of Math.103 (1976), 103-161. · Zbl 0336.20029
[13] A.Dimca and G.Lehrer, Purity and equivariant weight polynomials, (G.Lehrer (ed.), ed.), Algebraic Groups and Lie Groups, Australian Mathematical Society Lecture Series, Cambridge University Press, pp. 161-181. · Zbl 0905.57022
[14] I.Dolgachev, Classical algebraic geometry, pp. xii+639, Cambridge University Press, Cambridge, 2012. https://doi.org/10.1017/CBO9781139084437, a modern view. · Zbl 1252.14001 · doi:10.1017/CBO9781139084437
[15] I.Dolgachev and A.Duncan, Automorphisms of cubic surfaces in positive characteristic, Izv. Ross. Akad. Nauk Ser. Mat.83, (2019), no. 3, 15-92. https://doi.org/10.4213/im8803. · Zbl 1427.14086 · doi:10.4213/im8803
[16] I.Dolgachev and D.Ortland, Point sets in projective spaces, Astérisque165 (1988), 1-210. · Zbl 0685.14029
[17] P.Fleischmann and I.Janiszczak, Combinatorics and Poincaré polynomials of hyperplane complements for exceptional Weyl groups, J. Combin. Theory Ser. A63 (1993), no. 2, 257-274. · Zbl 0838.20045
[18] D. G.Glynn, Rings of geometries. II, J. Combin. Theory Ser. A49 (1988), no. 1, 26-66. https://doi.org/10.1016/0097‐3165(88)90027‐1. · Zbl 0661.51009 · doi:10.1016/0097‐3165(88)90027‐1
[19] M.Gross, P.Hacking, and S.Keel, Birational geometry of cluster algebras, Algebr. Geom.2 (2015), no. 2, 137-175. https://doi.org/10.14231/AG‐2015‐007. · Zbl 1322.14032 · doi:10.14231/AG‐2015‐007
[20] M.Gross, P.Hacking, and S.Keel, Mirror symmetry for log Calabi‐Yau surfaces I, Publ. Math. Inst. Hautes Études Sci.122 (2015), 65-168. https://doi.org/10.1007/s10240‐015‐0073‐1. · Zbl 1351.14024 · doi:10.1007/s10240‐015‐0073‐1
[21] M.Gross, P.Hacking, and S.Keel, Moduli of surfaces with an anti‐canonical cycle, Compos. Math.151 (2015), no. 2, 265-291. https://doi.org/10.1112/S0010437X14007611. · Zbl 1330.14062 · doi:10.1112/S0010437X14007611
[22] J.Harris and I.Morrison, Moduli of curves, Graduate Texts in Mathematics, vol. 187, pp. xiv+366, Springer, New York, 1998. · Zbl 0913.14005
[23] N.Kaplan et al., Counting arcs in projective planes via Glynn’s algorithm, J. Geom.108 (2017), no. 3, 1013-1029. https://doi.org/10.1007/s00022‐017‐0391‐1. · Zbl 1398.51004 · doi:10.1007/s00022‐017‐0391‐1
[24] M.Kisin and G. I.Lehrer, Equivariant Poincaré polynomials and counting points over finite fields, J. Algebra247 (2002), no. 2, 435-451. https://doi.org/10.1006/jabr.2001.9029. · Zbl 1039.14005 · doi:10.1006/jabr.2001.9029
[25] J.Kollár, Rational curves on algebraic varieties, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 32, pp. viii+320, Springer, Berlin, 1996.
[26] M.Kontsevich and A.Zorich, Connected components of the moduli spaces of Abelian differentials with prescribed singularities, Invent. Math.153 (2003), no. 3, 631-678. https://doi.org/10.1007/s00222‐003‐0303‐x. · Zbl 1087.32010 · doi:10.1007/s00222‐003‐0303‐x
[27] E.Looijenga, Rational surfaces with an anticanonical cycle, Ann. of Math. (2)114 (1981), no. 2, 267-322. https://doi.org/10.2307/1971295. · Zbl 0509.14035 · doi:10.2307/1971295
[28] E.Looijenga, Cohomology of \(\mathcal{M}_3\) and \(\mathcal{M}_3^1\), (C.‐F.Bödigheimer (ed.) and R. M.Hain (ed.), eds.), Mapping Class Groups and Moduli Spaces of Riemann Surfaces, Contemporary Mathematics, vol. 150, pp. 205-228. · Zbl 0814.14029
[29] D.Loughran and A.Trepalin, Inverse Galois problem for del Pezzo surfaces over finite fields, Math. Res. Lett.27 (2020), no. 3, 845-853. https://doi.org/10.4310/MRL.2020.v27.n3.a11. · Zbl 1457.14055 · doi:10.4310/MRL.2020.v27.n3.a11
[30] C.Macmeikan, The Poincaré polynomial of an MP arrangement, Proc. Amer. Math. Soc.132 (2004), no. 6, 1575-1580. · Zbl 1079.14026
[31] C. A. M.Peters and J. H. M.Steenbrink, Degeneration of the Leray spectral sequence for certain geometric quotients, Mosc. Math. J.3 (2003), no. 3, 1085-1095, 1201. https://doi.org/10.17323/1609‐4514‐2003‐3‐3‐1085‐1095. · Zbl 1049.14035 · doi:10.17323/1609‐4514‐2003‐3‐3‐1085‐1095
[32] M.Reid, Undergraduate algebraic geometry, London Mathematical Society Student Texts, vol. 12, pp. viii+129, Cambridge University Press, Cambridge, 1988. https://doi.org/10.1017/CBO9781139163699. · Zbl 0701.14001 · doi:10.1017/CBO9781139163699
[33] Q.Ren, K.Shaw, and B.Sturmfels, Tropicalization of del Pezzo surfaces, Adv. Math.300 (2016), 156-189. https://doi.org/10.1016/j.aim.2016.03.017. · Zbl 1375.14218 · doi:10.1016/j.aim.2016.03.017
[34] J.‐P.Serre, Lectures on \(N_X (p)\), Chapman & Hall/CRC Research Notes in Mathematics, vol. 11, pp. x+163, CRC Press, Boca Raton, FL, 2012. · Zbl 1238.11001
[35] N. C.Tu, Non‐singular cubic surfaces with star points, Vietnam J. Math.29 (2001), no. 3, 287-292. · Zbl 1068.14507
[36] V. A.Vasiliev, How to calculate the homology of spaces of nonsingular algebraic projective hypersurfaces, Tr. Mat. Inst. Steklova225 (1999), no. Solitony Geom. Topol. na Perekrest., 132-152. · Zbl 0981.55008
[37] R. O.Wells, Jr, Comparison of de Rham and Dolbeault cohomology for proper surjective mappings, Pacific J. Math.53 (1974), 281-300. http://projecteuclid.org/euclid.pjm/1102911803. · Zbl 0261.32005
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.