×

Syntax for semantics: Krull’s maximal ideal theorem. (English) Zbl 1490.13001

Heinzmann, Gerhard (ed.) et al., Paul Lorenzen – mathematician and logician. Contributions presented at the workshop, Konstanz, Germany, March 8–9, 2018. Cham: Springer. Log. Epistemol. Unity Sci. 51, 77-102 (2021).
The authors develop, continuing on their previous work, an account of Krull’s Maximal Ideal Theorem (MIT) in terms of an infinitary variant of Lorenzen’s and Scott’s entailment relations (relations between finite sets of a given set that are reflexive, monotone and transitive). The discussion is within the framework of Bishop’s constructive mathematics, as formalized in Aczel’s constructive set theory (CZF). After some introductory results on MIT for the case of countable, Noetherian, and arbitrary rings, the authors define geometric entailment relation between finite and arbitrary subsets of a given set, by modifying the conventional entailment relation and then continue on using this notion of entailment. In discussing Krull’s theorem without choice, the authors need inductively generated entailment relation of prime ideals (non-inductive description is through a formal Nullstellensatz). Next they consider the entailment relation of maximal ideals, in order to develop infinitary entailment relations.
In the application section, constructive and elementary characterization of Krull dimension (Kdim) is recalled. One result states that \(\operatorname{Kdim}\mathbf{A}\leq 0\) if and only if \(\vdash_{\text{p}}\,=\,\vdash_{\text{m}}\) (here “p” and “m” stand for prime and maximal ideals respectively). For Jacobson (or Hilbert) rings (every prime ideal is the intersection of all maximal ideals containing it), \(\mathbf{A}\) is a Jacobson ring if and only if \(\vdash_{\text{m}}\) is conservative over \(\triangleright\) and the Jacobson radical is a finitary closure operator. Primary ideals and von Neumann regularity are also discussed and so are integral extensions.
The paper contains almost 100 references related to the subject of the paper.
For the entire collection see [Zbl 1470.03010].

MSC:

13-03 History of commutative algebra
03E25 Axiom of choice and related propositions
13C15 Dimension theory, depth, related commutative rings (catenary, etc.)
01A60 History of mathematics in the 20th century
03A05 Philosophical and critical aspects of logic and foundations
03F65 Other constructive mathematics
01A70 Biographies, obituaries, personalia, bibliographies
13A15 Ideals and multiplicative ideal theory in commutative rings
13E05 Commutative Noetherian rings and modules

Biographic References:

Lorenzen, Paul

References:

[1] Scott, D. S. (1973). Background to formalization. In Truth, syntax and modality (Proc. Conf. Alternative Semantics, Temple Univ., Philadelphia, Pa., 1970), volume 68 of Studies in logic and the foundations of mathematics, edited by Hugues Leblanc (pp. 244-273). Amsterdam: North-Holland. · Zbl 0277.02003
[2] Scott, D. (1974). Completeness and axiomatizability in many-valued logic. In L. Henkin, J. Addison, C. C. Chang, W. Craig, D. Scott, & R. Vaught (Eds.), Proceedings of the Tarski Symposium (Proc. Sympos. Pure Math., Vol. xxv, Univ. California, Berkeley, Calif., 1971)(pp. 411-435). Providence, RI: American Mathematical Society. · Zbl 0318.02021
[3] Moore, G.H. (1982). Zermelo’s axiom of choice: Its origins, development, & influence. Mineola, NY: Dover Publications 2013. Unabridged republication of the work originally published as volume 8 in the series “Studies in the history of mathematics and physical sciences” by Springer-Verlag, New York. · Zbl 0497.01005
[4] Fourman, M., & Grayson, R. (1982). Formal spaces. In The L. E. J. Brouwer Centenary Symposium (Noordwijkerhout, 1981). Studies in logic and the foundations of mathematics (Vol. 110, pp. 107-122). Amsterdam: North-Holland. · Zbl 0537.03040
[5] Aczel, P. (1978). The type theoretic interpretation of constructive set theory. In Logic Colloquium ’77 (Proceedings of the Conference on Wrocław, 1977), volume 96 of Studies in logic and the foundations of mathematics (pp. 55-66). Amsterdam: North-Holland. · Zbl 0481.03035
[6] Aczel, P. (1982). The type theoretic interpretation of constructive set theory: Choice principles. In The L. E. J. Brouwer centenary symposium (Noordwijkerhout, 1981) of studies in logic and the foundations of mathematics(Vol. 110, pp. 1-40). Amsterdam: North-Holland. · Zbl 0529.03035
[7] Aczel, P. (1986). The type theoretic interpretation of constructive set theory: Inductive definitions. In Logic, methodology and philosophy of science,vii (Salzburg, 1983), volume 114 of Studies in logic and the foundations of mathematics (pp. 17-49). Amsterdam: North-Holland. · Zbl 0624.03044
[8] Aczel, P. (2006). Aspects of general topology in constructive set theory. Annals of Pure and Applied Logic, 137(1-3), 3-29. · Zbl 1077.03035 · doi:10.1016/j.apal.2005.05.016
[9] Aczel, P., & Rathjen, M. (2000). Notes on constructive set theory(p. 40). Technical report, Institut Mittag-Leffler.
[10] Aczel, P., & M. Rathjen. (2010). Constructive set theory. Book draft. https://www1.maths.leeds.ac.uk/ rathjen/book.pdf.
[11] Arapović, M. (1983). On the embedding of a commutative ring into a \(0\)-dimensional commutative ring. Glasnik Matematički Ser. iii, 18(1), 53-59. · Zbl 0521.13005
[12] Atiyah, M. F., & Macdonald, I. G. (1969). Introduction to commutative algebra. Reading, MA: Addison-Wesley. · Zbl 0175.03601
[13] Banaschewski, B. (1983). The power of the ultrafilter theorem. Journal of the London Mathematical Society, 27(2), 193-202. · Zbl 0523.03037 · doi:10.1112/jlms/s2-27.2.193
[14] Banaschewski, B. (1994). A new proof that Krull implies Zorn. Mathematical Logic Quarterly, 40, 478-480. · Zbl 0813.03032 · doi:10.1002/malq.19940400405
[15] Banaschewski, B., & Vermeulen, J. J. C. (1996). Polynomials and radical ideals. Journal of Pure and Applied Algebra, 113(3), 219-227. · Zbl 0873.13007 · doi:10.1016/0022-4049(95)00149-2
[16] Berger, U. (2004). A computational interpretation of open induction. In F. Titsworth (Ed.), Proceedings of the 19th annual IEEE symposium on logic in computer science(pp. 326-334). Washington, D.C.: IEEE Computer Society.
[17] Bishop, E. (1967). Foundations of constructive analysis. New York: McGraw-Hill. · Zbl 0183.01503
[18] Bishop, E., & Bridges, D. (1985). Constructive analysis. Berlin: Springer. · Zbl 0656.03042
[19] Blechschmidt, I. (2017). Using the internal language of toposes in algebraic geometry. Doctoral dissertation, University of Augsburg.
[20] Boileau, A., & Joyal, A. (1981). La logique des topos. Journal of Symbolic Logic, 46(1), 6-16. · Zbl 0544.03035 · doi:10.2307/2273251
[21] Brewer, J., & Richman, F. (2006). Subrings of zero-dimensional rings. In J. W. Brewer, S. Glaz, W. J. Heinzer, & B. M. Olberding (Eds.), Multiplicative ideal theory in commutative algebra: A tribute to the work of Robert Gilmer(pp. 73-88). New York: Springer Science+Business Media. · Zbl 1123.13004
[22] Campbell, P. J. (1978). The origin of Zorn’s Lemma. Historia Mathematica, 5, 77-89. · Zbl 0377.01009 · doi:10.1016/0315-0860(78)90136-2
[23] Cederquist, J., & Thierry C. (2000). Entailment relations and distributive lattices. In S.R. Buss, P. Hájek, & P. Pudlák (Eds.), Logic Colloquium ’98: Proceedings of the annual European summer meeting of the Association for Symbolic Logic, Prague, Czech Republic, August 9-15, 1998, volume 13 of Lecture notes in logic (pp. 127-139). Natick, MA: A. K. Peters. · Zbl 0948.03056
[24] Coquand, T. (1997). A note on the open induction principle. Technical report, University of Gothenburg. www.cse.chalmers.se/ coquand/open.ps.
[25] Coquand, T. (2009). Space of valuations. Annals of Pure and Applied Logic, 157, 97-109. · Zbl 1222.03072 · doi:10.1016/j.apal.2008.09.003
[26] Coquand, T., Ducos, L., Lombardi, H., & Quitté, C. (2009). Constructive Krull dimension. i: Integral extensions. Journal of Algebra and Its Applications, 8(1), 129-138. · Zbl 1172.13007
[27] Coquand, T., & Lombardi, H. (2002). Hidden constructions in abstract algebra: Krull dimension of distributive lattices and commutative rings. In M. Fontana, S. -E. Kabbaj, & S. Wiegand (Eds.), Commutative ring theory and applications, volume 231 of Lecture notes in pure and applied mathematics (pp. 477-499). Reading, MA: Addison-Wesley. · Zbl 1096.13507
[28] Coquand, T., & Lombardi, H. (2006). A logical approach to abstract algebra. Mathematical Structures in Computer Science, 16, 885-900. · Zbl 1118.03059 · doi:10.1017/S0960129506005627
[29] Coquand, T., Lombardi, H., & Neuwirth, S. (2019). Lattice-ordered groups generated by an ordered group and regular systems of ideals. Rocky Mountain Journal of Mathematics, 49(5), 1449-1489. · Zbl 1496.06018 · doi:10.1216/RMJ-2019-49-5-1449
[30] Coquand, T., Lombardi, H., & Roy, M. -F. (2005). An elementary characterisation of Krull dimension. In L. Crosilla & P. Schuster (Eds.), From sets and types to topology and analysis, volume 48 of Oxford logic guides (pp. 239-244). Oxford: Oxford University Press. · Zbl 1161.54303
[31] Coquand, T., & Neuwirth, S. (2017). An introduction to Lorenzen’s Algebraic and logistic investigations on free lattices (1951). Preprint. https://arxiv.org/abs/1711.06139.
[32] Coquand, T., & Persson, H. (1998a). Gröbner bases in type theory. In T. Altenkirch, B. Reus, & W. Naraschewski (Eds.), Types for proofs and programs(pp. 33-46). Berlin: Springer. · Zbl 0979.03044
[33] Coquand, T., & Persson, H. (1998b). Integrated development of algebra in type theory. Calculemus and Types Workshop, 98. · Zbl 0910.03033
[34] Coquand, T., Sambin, G., Smith, J., & Valentini, S. (2003). Inductively generated formal topologies. Annals of Pure and Applied Logic, 124, 71-106. · Zbl 1070.03041 · doi:10.1016/S0168-0072(03)00052-6
[35] Coste, M., Lombardi, H., & Roy, M. -F. (2001). Dynamical method in algebra: Effective Nullstellensätze. Annals of Pure and Applied Logic, 111(3), 203-256. · Zbl 0992.03076
[36] Crosilla, L., & Schuster, P. (2014). Finite methods in mathematical practice. In G. Link (Ed.), Formalism and beyond: On the nature of mathematical discourse, volume 23 of Logos (pp. 351-410). Boston, MA, and Berlin: Walter de Gruyter. · Zbl 1329.03013
[37] Curi, G. (2010). On some peculiar aspects of the constructive theory of point-free spaces. Mathematical Logic Quarterly, 56(4), 375-387. · Zbl 1200.03043 · doi:10.1002/malq.200910037
[38] Eisenbud, D. (1995). Commutative algebra with a view toward algebraic geometry, volume 150 of Graduate texts in mathematics. New York: Springer. · Zbl 0819.13001
[39] Español, L. (1982). Constructive Krull dimension of lattices. Revista de la Academia de Ciencias Exactas ... Zaragoza (2) 37, 5-9. · Zbl 0556.06001
[40] Fine, A. (1993). Fictionalism. Midwest Studies in Philosophy, 18, 1-18. · doi:10.1111/j.1475-4975.1993.tb00254.x
[41] Goldman, O. (1951). Hilbert rings and the Hilbert Nullstellensatz. Mathematische Zeitschrift, 54(2), 136-140. · Zbl 0042.26401 · doi:10.1007/BF01179855
[42] Hertz, P. (1922). Über Axiomensysteme für beliebige Satzsysteme. i. Teil: Sätze ersten Grades. Mathematische Annalen, 87(3), 246-269. · JFM 48.1117.05
[43] Hertz, P. (1923). Über Axiomensysteme für beliebige Satzsysteme. ii. Teil: Sätze höheren Grades. Mathematische Annalen, 89(1), 76-102. · JFM 49.0683.01
[44] Hertz, P. (1929). Über Axiomensysteme für beliebige Satzsysteme. Mathematische Annalen, 101(1), 457-514. · JFM 55.0627.01 · doi:10.1007/BF01454856
[45] Hodges, W. (1979). Krull implies Zorn. Journal of the London Mathematical Society, 19, 285-287. · Zbl 0394.03045 · doi:10.1112/jlms/s2-19.2.285
[46] Howard, P., & Rubin, J. (1998). Consequences of the Axiom of Choice. Providence, RI: American Mathematical Society. · Zbl 0947.03001 · doi:10.1090/surv/059
[47] Jacobsson, C., & Löfwall, C. (1991). Standard bases for general coefficient rings and a new constructive proof of Hilbert’s basis theorem. Journal of Symbolic Computation, 12(3), 337-372. · Zbl 0755.13011 · doi:10.1016/S0747-7171(08)80154-X
[48] Johnstone, P.T. (1982). Stone spaces (Cambridge studies in advanced mathematics 3). Cambridge: Cambridge University Press. · Zbl 0499.54001
[49] Johnstone, P.T. (2002). Sketches of an elephant: A topos theory compendium, volume 44 of Oxford logic guides (Vol. 2). Oxford: Clarendon Press. · Zbl 1071.18001
[50] Krull, W. (1929). Idealtheorie in Ringen ohne Endlichkeitsbedingung. Mathematische Annalen, 101(1), 729-744. · JFM 55.0681.01 · doi:10.1007/BF01454872
[51] Kunz, E. (1991). Algebra. Braunschweig: Vieweg. · Zbl 0743.12002 · doi:10.1007/978-3-322-85355-4
[52] Lal, H. (1971). A remark on rings with primary ideals as maximal ideals. Mathematica Scandinavica, 29, 72. · Zbl 0235.13008 · doi:10.7146/math.scand.a-11035
[53] Legris, J. (2012). Paul Hertz and the origins of structural reasoning. In J. -Y. Béziau (Ed.), Universal logic: An anthology: From Paul Hertz to Dov Gabbay, Studies in universal logic (pp. 3-10). Basel: Birkhäuser. · Zbl 1291.03005
[54] Lombardi, H. (2002). Dimension de Krull, Nullstellensätze et évaluation dynamique. Mathematische Zeitschrift, 242, 23-46. · Zbl 1095.13517 · doi:10.1007/s002090100305
[55] Lombardi, H., & Quitté, C. (2015). Commutative algebra: Constructive methods: Finite projective modules, volume 20 of Algebra and applications. Dordrecht: Springer Netherlands. · Zbl 1327.13001
[56] Lorenzen, P. (1950). Über halbgeordnete Gruppen. Mathematische Zeitschrift, 52(1), 483-526. · Zbl 0035.29303 · doi:10.1007/BF02230707
[57] Lorenzen, P. (1951). Algebraische und logistische Untersuchungen über freie Verbände. Journal of Symbolic Logic, 16(2), 81-106. · Zbl 0045.29502 · doi:10.2307/2266681
[58] Lorenzen, P. (1952). Teilbarkeitstheorie in Bereichen. Mathematische Zeitschrift, 55(3), 269-275. · Zbl 0048.01202 · doi:10.1007/BF01181123
[59] Lorenzen, P. (1953). Die Erweiterung halbgeordneter Gruppen zu Verbandsgruppen. Mathematische Zeitschrift, 58(1), 15-24. · Zbl 0051.25302 · doi:10.1007/BF01174126
[60] Lorenzen, P. (1953). Eine Bemerkung über die Abzählbarkeitsvoraussetzung in der Algebra. Mathematische Zeitschrift, 57, 241-243. · Zbl 0050.00803 · doi:10.1007/BF01192926
[61] Lorenzen, P. (2017). Algebraic and logistic investigations on free lattices (S. Neuwirth of Lorenzen 1951, Trans.). https://arxiv.org/abs/1710.08138
[62] Mines, R., Fred R., & Ruitenburg, W. (1988). A course in constructive algebra. Universitext. New York: Springer. · Zbl 0725.03044
[63] Negri, S., & von Plato, J. (1998). Cut elimination in the presence of axioms. Bulletin of Symbolic Logic, 4(4), 418-435. · Zbl 0934.03072 · doi:10.2307/420956
[64] Perdry, H. (2004). Strongly Noetherian rings and constructive ideal theory. Journal of Symbolic Computation, 37(4), 511-535. · Zbl 1137.13308 · doi:10.1016/j.jsc.2003.02.001
[65] Perdry, H., & Schuster, P. (2011). Noetherian orders. Mathematical Structures in Computer Science, 21, 111-124. · Zbl 1216.03065 · doi:10.1017/S0960129510000460
[66] Perdry, H., & Schuster, P. (2014). Constructing Gröbner bases for Noetherian rings. Mathematical Structures in Computer Science, 24, e240206. · Zbl 1342.68365 · doi:10.1017/S0960129513000509
[67] Raoult, J.-C. (1988). Proving open properties by induction. Information Processing Letters, 29(1), 19-23. · Zbl 0661.04002 · doi:10.1016/0020-0190(88)90126-3
[68] Rathjen, M. (2005). Generalized inductive definitions in constructive set theory. In L. Crosilla & P. Schuster (Eds.) From sets and types to topology and analysis: Towards practicable foundations for constructive mathematics, volume 48 of Oxford logic guides (pp. 23-40). Oxford: Clarendon Press. · Zbl 1095.03076
[69] Richman, F. (1974). Constructive aspects of Noetherian rings. Proceedings of the American Mathematical Society, 44, 436-441. · Zbl 0265.13011 · doi:10.1090/S0002-9939-1974-0416874-9
[70] Rinaldi, D. (2014). Formal methods in the theories of rings and domains. Doctoral dissertation, University of Munich.
[71] Rinaldi, D., & Schuster, P. (2016). A universal Krull-Lindenbaum theorem. Journal of Pure and Applied Algebra, 220, 3207-3232. · Zbl 1420.03128 · doi:10.1016/j.jpaa.2016.02.011
[72] Rinaldi, D., Schuster, P., & Wessel, D. (2017). Eliminating disjunctions by disjunction elimination. Bulletin of Symbolic Logic, 23(2), 181-200. · Zbl 1455.03074 · doi:10.1017/bsl.2017.13
[73] Rinaldi, D., Schuster, P., & Wessel, D. (2018). Eliminating disjunctions by disjunction elimination. Indagationes Mathematicae (N.S.) 29(1), 226-259. · Zbl 1437.03163
[74] Rinaldi, D., & Wessel, D. (2018). Extension by conservation. Sikorski’s theorem. Logical Methods in Computer Science, 14(4:8), 1-17. · Zbl 1454.03085
[75] Rinaldi, D., & Wessel, D. (2019). Cut elimination for entailment relations. Archive for Mathematical Logic, 58(5-6), 605-625. · Zbl 1477.03243 · doi:10.1007/s00153-018-0653-0
[76] Sambin, G. (2003). Some points in formal topology. Theoretical Computer Science, 305(1-3), 347-408. · Zbl 1044.54001 · doi:10.1016/S0304-3975(02)00704-1
[77] Satyanarayana, M. (1967). Rings with primary ideals as maximal ideals. Mathematica Scandinavica, 20, 52-54. · Zbl 0146.26204 · doi:10.7146/math.scand.a-10818
[78] Scholz, H. (1919). Die Religionsphilosophie des Als-ob. Annalen der Philosophie, 1(1), 27-113.
[79] Schuster, P. (2012). Induction in algebra: A first case study. In Proceedings, LICS 2012 27th annual ACM/IEEE symposium on logic in computer science(pp. 581-585). Dubrovnik, Croatia: IEEE Computer Society Publications. · Zbl 1364.03086
[80] Schuster, P. (2013). Induction in algebra: A first case study. Logical Methods in Computer Science, 9(3), 20. · Zbl 1277.03065 · doi:10.2168/LMCS-9(3:20)2013
[81] Scott, D. (1954). Prime ideal theorems for rings, lattices, and Boolean algebras. Bulletin of the American Mathematical Society, 60(4), 390.
[82] Scott, D. (1971). On engendering an illusion of understanding. Journal of Philosophy, 68, 787-807. · doi:10.2307/2024952
[83] Seidenberg, A. (1974). What is Noetherian? Rendiconti del Seminario Matematico e Fisico di Milano, 44, 55-61. · Zbl 0345.13010 · doi:10.1007/BF02925651
[84] Simpson, S. G. (2009). Subsystems of second order arithmetic, Perspectives in Logic (2nd ed.). Cambridge: Cambridge University Press. · Zbl 1181.03001
[85] Steinitz, E. (1910). Algebraische Theorie der Körper. Journal für die reine und angewandte Mathematik, 137, 167-309. · JFM 41.0445.03 · doi:10.1515/crll.1910.137.167
[86] Vaihinger, H. (1922). Die Philosophie des Als Ob: System der theoretischen, praktischen und religiösen Fiktionen der Menschheit auf Grund eines idealistischen Positivismus. 7. u. 8. Aufl. Leipzig: Verlag von Felix Meiner.
[87] Vaihinger, H. (1924). The philosophy of ‘as if’: A system of the theoretical, practical and religious fictions of mankind(C. K. Ogden, Trans.). London: Routledge & Kegan Paul.
[88] Wessel, D. (2018). Points, ideals, and geometric sequents. Technical report, University of Verona.
[89] Yengui, I. (2008). Making the use of maximal ideals constructive. Theoretical Computer Science, 392, 174-178. · Zbl 1141.13303 · doi:10.1016/j.tcs.2007.10.011
[90] Yengui, I. (2015). Constructive commutative algebra: Projective modules over polynomial rings and dynamical Gröbner bases. Lecture notes in mathematics (Vol. 2138). Cham: Springer. · Zbl 1360.13002
[91] Zermelo, E. (1904). Beweis, daß jede Menge wohlgeordnet werden kann. Mathematische Annalen, 59, 514-516. · JFM 35.0088.03 · doi:10.1007/BF01445300
[92] Zermelo, E. (1908). Neuer Beweis für die Möglichkeit einer Wohlordnung. Mathematische Annalen, 65, 107-128. · JFM 38.0096.02 · doi:10.1007/BF01450054
[93] Zorn, M. (1935). A remark on method in transfinite algebra. Bulletin of the American Mathematical Society, 41, 667-670 · JFM 61.0127.13 · doi:10.1090/S0002-9904-1935-06166-X
[94] Wessel, D. (2020). A note on connected reduced rings. Journal of Commutative Algebra. Forthcoming. https://projecteuclid.org/euclid.jca/1561363253
[95] Negri, S. (2014). Proof analysis beyond geometric theories: from rule systems to systems of rules. Journal of Logic and Computation, 26(2), 513-537. · Zbl 1403.03116 · doi:10.1093/logcom/exu037
[96] Kemper, G., & Yengui, I. (2019). Valuative dimension and monomial orders. https://arxiv.org/abs/1906.12067 · Zbl 1440.13112
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.