×

Constructing Gröbner bases for Noetherian rings. (English) Zbl 1342.68365

Summary: We give a constructive proof showing that every finitely generated polynomial ideal has a Gröbner basis, provided the ring of coefficients is Noetherian in the sense of Richman and Seidenberg. That is, we give a constructive termination proof for a variant of the well-known algorithm for computing the Gröbner basis. In combination with a purely order-theoretic result we have proved in a separate paper, this yields a unified constructive proof of the Hilbert basis theorem for all Noether classes: if a ring belongs to a Noether class, then so does the polynomial ring. Our proof can be seen as a constructive reworking of one of the classical proofs, in the spirit of the partial realisation of Hilbert’s programme in algebra put forward by Coquand and Lombardi. The rings under consideration need not be commutative, but are assumed to be coherent and strongly discrete: that is, they admit a membership test for every finitely generated ideal. As a complement to the proof, we provide a prime decomposition for commutative rings possessing the finite-depth property.

MSC:

68W30 Symbolic computation and algebraic computation
13F20 Polynomial rings and ideals; rings of integer-valued polynomials
13P10 Gröbner bases; other bases for ideals and modules (e.g., Janet and border bases)
Full Text: DOI

References:

[1] DOI: 10.1017/S0960129510000460 · Zbl 1216.03065 · doi:10.1017/S0960129510000460
[2] DOI: 10.1002/malq.200710042 · Zbl 1134.03039 · doi:10.1002/malq.200710042
[3] DOI: 10.1016/j.jsc.2003.02.001 · Zbl 1137.13308 · doi:10.1016/j.jsc.2003.02.001
[4] A Course in Constructive Algebra (1988) · Zbl 0725.03044
[5] DOI: 10.1007/s00209-011-0847-1 · Zbl 1242.13012 · doi:10.1007/s00209-011-0847-1
[6] DOI: 10.1016/j.jalgebra.2010.04.014 · Zbl 1200.13047 · doi:10.1016/j.jalgebra.2010.04.014
[7] Modules projectifs de type fini (2011)
[8] Commutative Coherent Rings (1989) · Zbl 0745.13004
[9] Gröbner Bases and Applications 251 pp 393– (1998)
[10] Essays in Constructive Mathematics (2005) · Zbl 1090.11001
[11] Commutative Rings (1974)
[12] DOI: 10.1007/3-540-48167-2_3 · doi:10.1007/3-540-48167-2_3
[13] DOI: 10.1016/S0747-7171(08)80154-X · Zbl 0755.13011 · doi:10.1016/S0747-7171(08)80154-X
[14] DOI: 10.1017/S0960129506005627 · Zbl 1118.03059 · doi:10.1017/S0960129506005627
[15] How the World Computes: Proceedings, CiE 2012, Turing Centenary Conference and Eighth Conference on Computability in Europe, Cambridge 7318 pp 294– (2012)
[16] DOI: 10.1007/BFb0021089 · Zbl 1434.03143 · doi:10.1007/BFb0021089
[17] Ein Algorithmus zum Auffinden der Basiselemente des Restklassenringes nach einem nulldimensionalen Polynomideal (1965) · Zbl 1245.13020
[18] Proceedings of the Ninetenth Annual IEEE Symposium on Logic in Computer Science pp 326– (2004)
[19] Graduate Studies in Mathematics 3 (1994)
[20] DOI: 10.1016/j.jalgebra.2006.01.051 · Zbl 1113.13013 · doi:10.1016/j.jalgebra.2006.01.051
[21] DOI: 10.1007/BF02925651 · Zbl 0345.13010 · doi:10.1007/BF02925651
[22] Logical Approaches to Computational Barriers: Proceedings Second Conference on Computability in Europe – CiE 2006 3988 pp 481– (2006) · Zbl 1102.68002 · doi:10.1007/11780342_49
[23] Proceedings 27th Annual ACM/IEEE Symposium on Logic in Computer Science: LICS 2012 pp 581– (2012)
[24] DOI: 10.1081/AGB-120018518 · Zbl 1099.13511 · doi:10.1081/AGB-120018518
[25] DOI: 10.1090/S0002-9939-1974-0416874-9 · doi:10.1090/S0002-9939-1974-0416874-9
[26] DOI: 10.1016/0020-0190(88)90126-3 · Zbl 0661.04002 · doi:10.1016/0020-0190(88)90126-3
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.