×

Models of discretized moduli spaces, cohomological field theories, and Gaussian means. (English) Zbl 1329.81298

Summary: We prove combinatorially the explicit relation between genus filtrated \(s\)-loop means of the Gaussian matrix model and terms of the genus expansion of the Kontsevich-Penner matrix model (KPMM). The latter is the generating function for volumes of discretized (open) moduli spaces \(M_{g, s}^{\text{disc}}\) given by \(N_{g, s}(P_1, \ldots, P_s)\) for \((P_1, \ldots, P_s) \in \mathbb{Z}_+^s\). This generating function therefore enjoys the topological recursion, and we prove that it is simultaneously the generating function for ancestor invariants of a cohomological field theory thus enjoying the Givental decomposition. We use another Givental-type decomposition obtained for this model by J. Ambjørn et al. [Nucl. Phys., B 404, No. 1–2, 127–172 (1995; Zbl 1043.81636); erratum ibid. 449, No. 3, 681 (1995)] in terms of special times related to the discretization of moduli spaces thus representing its asymptotic expansion terms (and therefore those of the Gaussian means) as finite sums over graphs weighted by lower-order monomials in times thus giving another proof of (quasi)polynomiality of the discrete volumes. As an application, we find the coefficients in the first subleading order for \(\mathcal{M}_{g, 1}\) in two ways: by using the refined Harer-Zagier recursion and by exploiting the above Givental-type transformation. We put forward the conjecture that the above graph expansions can be used for probing the reduction structure of the Deligne-Mumford compactification \(\overline{\mathcal{M}}_{g, s}\) of moduli spaces of punctured Riemann surfaces.

MSC:

81T30 String and superstring theories; other extended objects (e.g., branes) in quantum field theory
14N35 Gromov-Witten invariants, quantum cohomology, Gopakumar-Vafa invariants, Donaldson-Thomas invariants (algebro-geometric aspects)
14D21 Applications of vector bundles and moduli spaces in mathematical physics (twistor theory, instantons, quantum field theory)

Citations:

Zbl 1043.81636

References:

[1] Harer, J.; Zagier, D., The Euler characteristic of the moduli space of curves, Invent. Math., 85, 457-485 (1986) · Zbl 0616.14017
[2] Brezin, É.; Hikami, S., Intersection theory from duality and replica, Comm. Math. Phys., 283, 507-521 (2008) · Zbl 1152.14300
[3] Morozov, A.; Shakirov, Sh., From Brezin-Hikami to Harer-Zagier formulas for Gaussian correlators
[4] Chekhov, L.; Eynard, B., Hermitean matrix model free energy: Feynman graph technique for all genera, J. High Energy Phys., 0603, 014 (2006), e-Print Archive: hep-th/0504116 · Zbl 1226.81137
[5] Bertrand, Eynard; Nicolas, Orantin, Invariants of algebraic curves and topological expansion, Commun. Number Theory Phys., 1, 347-452 (2007) · Zbl 1161.14026
[6] Gukov, S.; Sułkowski, P., A-polynomial, B-model, and quantization, J. High Energy Phys., 2012, 70 (2012) · Zbl 1309.81220
[7] Motohico, Mulase; Piotr, Sułkowski, Spectral curves and the Schrödinger equations for the Eynard-Orantin recursion · Zbl 1342.81458
[9] Manin, Y., Frobenius manifolds, quantum cohomology, and moduli spaces, (Am. Math. Soc. Colloquium Publications, vol. 47 (1999), Am. Math. Soc: Am. Math. Soc Providence, RI) · Zbl 0952.14032
[10] Chekhov, L.; Makeenko, Yu., The multicritical Kontsevich-Penner model, Modern Phys. Lett. A, 7, 1223-1236 (1992) · Zbl 1021.81704
[11] Ambjørn, J.; Chekhov, L.; Kristjansen, C. F.; Makeenko, Yu., Nuclear Phys. B, 449, 681 (1995), (erratum) · Zbl 1043.81636
[12] Chekhov, L.; Makeenko, Yu., A hint on the external field problem for matrix models, Phys. Lett. B, 278, 271-278 (1992)
[13] Marshakov, A.; Mironov, A.; Morozov, A., Generalized matrix models as conformal field theories. Discrete case, Phys. Lett. B, 265, 99-107 (1991)
[14] Chekhov, L., Matrix model for discretized moduli space, J. Geom. Phys., 12, 153-164 (1993) · Zbl 0793.14015
[15] Norbury, P., String and dilaton equations for counting lattice points in the moduli space of curves, Trans. AMS, 365, 1687-1709 (2013) · Zbl 1275.32015
[16] Mulase, M.; Penkava, M., Topological recursion for the Poincaré polynomial of the combinatorial moduli space of curves, Adv. Math., 230, 3, 1322-1339 (2012), arXiv:1009.2135 (2010) · Zbl 1253.14030
[17] Norbury, P., Counting lattice points in the moduli space of curves, Math. Res. Lett., 17, 467-481 (2010) · Zbl 1225.32023
[18] Chekhov, L., Matrix models tools and geometry of moduli spaces, Acta Appl. Math., 48, 33-90 (1997), e-Print Archive: hep-th/9509001 · Zbl 0898.14008
[19] Givental, A., Gromov-Witten invariants and quantization of quadratic Hamiltonians, Mosc. Math. J., 1, 4, 551-568 (2001) · Zbl 1008.53072
[21] Dunin-Barkowski, P.; Orantin, N.; Shadrin, S.; Spitz, L., Identification of the Givental formula with the spectral curve topological recursion procedure, Comm. Math. Phys., 328, 2, 669-700 (2014) · Zbl 1293.53090
[22] Eynard, B., All genus correlation functions for the hermitian 1-matrix model, J. High Energy Phys., 0411, 031 (2004)
[23] Chekhov, L.; Eynard, B.; Orantin, N., Free energy topological expansion for the 2-matrix model, J. High Energy Phys., 12, 053 (2006), hep-th/0603003 · Zbl 1226.81250
[24] Alexandrov, A.; Mironov, A.; Morozov, A., Partition functions of matrix models as the first special functions of String Theory I. Finite size Hermitean 1-matrix model, Internat. J. Modern Phys. A, 19, 4127-4165 (2004) · Zbl 1087.81051
[25] Penner, R. C.; McShane, Greg, Stable Curves and Screens on Fatgraphs (2007), MPI Publ., 23pp arXiv:0707.1468
[27] Andersen, J. E.; Penner, R. C.; Reidys, C. M.; Waterman, M. S., Topological classification and enumeration of RNA structures by genus, J. Math. Biol., 67, 1261-1278 (2013) · Zbl 1335.92068
[28] Andersen, J. E.; Chekhov, L. O.; Reidys, C. M.; Penner, R. C.; Sułkowski, P., Topological recursion for chord diagrams, RNA complexes, and cells in moduli spaces, Nuclear Phys. B, 866, 3, 414-443 (2013) · Zbl 1262.81122
[29] Penner, R. C., Perturbative series and the moduli space of Riemann surfaces, J. Differential Geom., 27, 35-53 (1988) · Zbl 0608.30046
[30] Penner, R. C., The decorated Teichmüller space of punctured surfaces, Comm. Math. Phys., 113, 299-339 (1987) · Zbl 0642.32012
[31] John, Harer, The virtual cohomological dimension of the mapping class group of an orientable surface, Invent. Math., 84, 157-176 (1986) · Zbl 0592.57009
[32] Strebel, K., Quadratic Differentials (1984), Springer: Springer Berlin · Zbl 0547.30001
[33] Kontsevich, M. L., Intersection theory on the moduli space of curves and the matrix Airy function, Comm. Math. Phys., 147, 1-23 (1992) · Zbl 0756.35081
[34] Lando, S. K.; Zvonkin, A. K., Graphs on Surfaces and Their Applications (2004), Springer: Springer Berlin · Zbl 0792.05005
[35] Kharchev, S.; Marshakov, A.; Mironov, A.; Morozov, A.; Zabrodin, A., Unification of all string models with \(c < 1\), Phys. Lett., 275B, 311-314 (1992)
[36] Ambjørn, J.; Chekhov, L., The matrix model for dessins d’enfants, Ann. Inst. Henri Poincaré D, 1, 3, 337-361 (2014) · Zbl 1304.81130
[37] Alexandrov, A.; Mironov, A.; Morozov, A.; Natanzon, S., On KP-integrable Hurwitz functions · Zbl 1333.81192
[38] Keel, S., Intersection theory of moduli spaces of stable \(n\)-pointed curves of genus zero, Trans. AMS, 330, 545-574 (1992) · Zbl 0768.14002
[39] Dubrovin, B., Geometry of 2D topological field theories, (Integrable Systems and Quantum Groups (Montecatini Terme, 1993). Integrable Systems and Quantum Groups (Montecatini Terme, 1993), Lecture Notes in Math., vol. 1620 (1996), Springer: Springer Berlin), 120-348 · Zbl 0841.58065
[40] Teleman, C., The structure of 2D semi-simple field theories, Invent. Math., 188, 525-588 (2012) · Zbl 1248.53074
[41] Haagerup, U.; Thorbjørnsen, S., Asymptotic expansions fr the Gaussian unitary ensembles, Infinite Dimens. Anal. Quantum Probab. Relat. Top., 15, 1, 1250003 (2012), 41pp · Zbl 1262.60009
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.