×

Infrared structures of scattering on self-dual radiative backgrounds. (English) Zbl 07899735

Summary: The scattering of gluons and gravitons in trivial backgrounds is endowed with many surprising infrared features which have interesting conformal interpretations on the two-dimensional celestial sphere. However, the fate of these structures in more general asymptotically flat backgrounds is far from clear. In this paper, we consider holomorphic infrared structures in the presence of non-perturbative, self-dual background gauge and gravitational fields which are determined by freely specified radiative data. We make use of explicit formulae for tree-level gluon and graviton scattering in these self-dual radiative backgrounds, as well as chiral twistor sigma model descriptions of the classical dynamics. Remarkably, we find that the leading holomorphic part of tree-level collinear splitting functions – or celestial OPEs – and infinite-dimensional chiral soft algebras are undeformed by the background. We also compute all-order holomorphic celestial OPEs in the MHV sectors of gauge theory and gravity.

MSC:

81Txx Quantum field theory; related classical field theories
83Cxx General relativity
81Uxx Quantum scattering theory

References:

[1] A. Strominger, Lectures on the Infrared Structure of Gravity and Gauge Theory, arXiv:1703.05448 [INSPIRE]. · Zbl 1408.83003
[2] A.-M. Raclariu, Lectures on Celestial Holography, arXiv:2107.02075 [INSPIRE].
[3] Pasterski, S., Lectures on celestial amplitudes, Eur. Phys. J. C, 81, 1062, 2021 · doi:10.1140/epjc/s10052-021-09846-7
[4] S. Pasterski, M. Pate and A.-M. Raclariu, Celestial Holography, in the proceedings of the Snowmass 2021, Seattle, U.S.A., July 17-26 (2022) [arXiv:2111.11392] [INSPIRE].
[5] McLoughlin, T.; Puhm, A.; Raclariu, A-M, The SAGEX review on scattering amplitudes chapter 11: soft theorems and celestial amplitudes, J. Phys. A, 55, 443012, 2022 · Zbl 1520.81143 · doi:10.1088/1751-8121/ac9a40
[6] S. Pasterski, S.-H. Shao and A. Strominger, Flat Space Amplitudes and Conformal Symmetry of the Celestial Sphere, Phys. Rev. D96 (2017) 065026 [arXiv:1701.00049] [INSPIRE].
[7] S. Pasterski and S.-H. Shao, Conformal basis for flat space amplitudes, Phys. Rev. D96 (2017) 065022 [arXiv:1705.01027] [INSPIRE].
[8] S. Pasterski, S.-H. Shao and A. Strominger, Gluon Amplitudes as 2d Conformal Correlators, Phys. Rev. D96 (2017) 085006 [arXiv:1706.03917] [INSPIRE].
[9] Fan, W.; Fotopoulos, A.; Taylor, TR, Soft Limits of Yang-Mills Amplitudes and Conformal Correlators, JHEP, 05, 121, 2019 · Zbl 1416.81150
[10] Pate, M.; Raclariu, A-M; Strominger, A.; Yuan, EY, Celestial operator products of gluons and gravitons, Rev. Math. Phys., 33, 2140003, 2021 · Zbl 07450891 · doi:10.1142/S0129055X21400031
[11] Banerjee, S.; Ghosh, S.; Gonzo, R., BMS symmetry of celestial OPE, JHEP, 04, 130, 2020 · Zbl 1436.83022 · doi:10.1007/JHEP04(2020)130
[12] Fotopoulos, A.; Stieberger, S.; Taylor, TR; Zhu, B., Extended Super BMS Algebra of Celestial CFT, JHEP, 09, 198, 2020 · Zbl 1454.81226 · doi:10.1007/JHEP09(2020)198
[13] Banerjee, S.; Ghosh, S.; Paul, P., MHV graviton scattering amplitudes and current algebra on the celestial sphere, JHEP, 02, 176, 2021 · doi:10.1007/JHEP02(2021)176
[14] Banerjee, S.; Ghosh, S., MHV gluon scattering amplitudes from celestial current algebras, JHEP, 10, 111, 2021 · doi:10.1007/JHEP10(2021)111
[15] Donnay, L.; Puhm, A.; Strominger, A., Conformally Soft Photons and Gravitons, JHEP, 01, 184, 2019 · Zbl 1409.81116 · doi:10.1007/JHEP01(2019)184
[16] Adamo, T.; Mason, L.; Sharma, A., Celestial amplitudes and conformal soft theorems, Class. Quant. Grav., 36, 205018, 2019 · Zbl 1478.81036 · doi:10.1088/1361-6382/ab42ce
[17] Puhm, A., Conformally Soft Theorem in Gravity, JHEP, 09, 130, 2020 · doi:10.1007/JHEP09(2020)130
[18] A. Guevara, Notes on Conformal Soft Theorems and Recursion Relations in Gravity, arXiv:1906.07810 [INSPIRE].
[19] Guevara, A.; Himwich, E.; Pate, M.; Strominger, A., Holographic symmetry algebras for gauge theory and gravity, JHEP, 11, 152, 2021 · Zbl 1521.81144 · doi:10.1007/JHEP11(2021)152
[20] Strominger, A., w_1+∞Algebra and the Celestial Sphere: Infinite Towers of Soft Graviton, Photon, and Gluon Symmetries, Phys. Rev. Lett., 127, 221601, 2021 · doi:10.1103/PhysRevLett.127.221601
[21] Himwich, E.; Pate, M.; Singh, K., Celestial operator product expansions and w_1+∞symmetry for all spins, JHEP, 01, 080, 2022 · Zbl 1521.81310 · doi:10.1007/JHEP01(2022)080
[22] Jiang, H., Holographic chiral algebra: supersymmetry, infinite Ward identities, and EFTs, JHEP, 01, 113, 2022 · Zbl 1521.81314 · doi:10.1007/JHEP01(2022)113
[23] Adamo, T.; Mason, L.; Sharma, A., Celestial w_1+∞Symmetries from Twistor Space, SIGMA, 18, 016, 2022 · Zbl 1489.83067
[24] Fan, W., Elements of celestial conformal field theory, JHEP, 08, 213, 2022 · Zbl 1522.81490 · doi:10.1007/JHEP08(2022)213
[25] Casali, E.; Melton, W.; Strominger, A., Celestial amplitudes as AdS-Witten diagrams, JHEP, 11, 140, 2022 · Zbl 1536.81179 · doi:10.1007/JHEP11(2022)140
[26] Fan, W., Celestial Yang-Mills amplitudes and D = 4 conformal blocks, JHEP, 09, 182, 2022 · Zbl 1531.81150 · doi:10.1007/JHEP09(2022)182
[27] de Gioia, LP; Raclariu, A-M, Eikonal approximation in celestial CFT, JHEP, 03, 030, 2023 · Zbl 07690594 · doi:10.1007/JHEP03(2023)030
[28] Gonzo, R.; McLoughlin, T.; Puhm, A., Celestial holography on Kerr-Schild backgrounds, JHEP, 10, 073, 2022 · Zbl 1534.83112 · doi:10.1007/JHEP10(2022)073
[29] Stieberger, S.; Taylor, TR; Zhu, B., Celestial Liouville theory for Yang-Mills amplitudes, Phys. Lett. B, 836, 137588, 2023 · Zbl 1518.85002 · doi:10.1016/j.physletb.2022.137588
[30] Melton, W.; Narayanan, SA; Strominger, A., Deforming soft algebras for gauge theory, JHEP, 03, 233, 2023 · Zbl 07690797 · doi:10.1007/JHEP03(2023)233
[31] Banerjee, S.; Mandal, R.; Manu, A.; Paul, P., MHV gluon scattering in the massive scalar background and celestial OPE, JHEP, 10, 007, 2023 · Zbl 07774612 · doi:10.1007/JHEP10(2023)007
[32] Taylor, TR; Zhu, B., Celestial Supersymmetry, JHEP, 06, 210, 2023 · Zbl 07716916 · doi:10.1007/JHEP06(2023)210
[33] Stieberger, S.; Taylor, TR; Zhu, B., Yang-Mills as a Liouville theory, Phys. Lett. B, 846, 138229, 2023 · Zbl 1539.81120 · doi:10.1016/j.physletb.2023.138229
[34] Bu, W.; Heuveline, S.; Skinner, D., Moyal deformations, W_1+∞and celestial holography, JHEP, 12, 011, 2022 · Zbl 1536.83086 · doi:10.1007/JHEP12(2022)011
[35] Monteiro, R., Celestial chiral algebras, colour-kinematics duality and integrability, JHEP, 01, 092, 2023 · Zbl 1540.81090 · doi:10.1007/JHEP01(2023)092
[36] Monteiro, R., From Moyal deformations to chiral higher-spin theories and to celestial algebras, JHEP, 03, 062, 2023 · Zbl 07690626 · doi:10.1007/JHEP03(2023)062
[37] Garner, N.; Paquette, NM, Twistorial monopoles & chiral algebras, JHEP, 08, 088, 2023 · Zbl 07748963 · doi:10.1007/JHEP08(2023)088
[38] K. Costello, N.M. Paquette and A. Sharma, Top-Down Holography in an Asymptotically Flat Spacetime, Phys. Rev. Lett.130 (2023) 061602 [arXiv:2208.14233] [INSPIRE].
[39] Costello, K.; Paquette, NM; Sharma, A., Burns space and holography, JHEP, 10, 174, 2023 · Zbl 07774779 · doi:10.1007/JHEP10(2023)174
[40] Bittleston, R.; Heuveline, S.; Skinner, D., The celestial chiral algebra of self-dual gravity on Eguchi-Hanson space, JHEP, 09, 008, 2023 · Zbl 07754587 · doi:10.1007/JHEP09(2023)008
[41] T. Adamo, L. Mason and A. Sharma, MHV scattering of gluons and gravitons in chiral strong fields, Phys. Rev. Lett.125 (2020) 041602 [arXiv:2003.13501] [INSPIRE].
[42] Adamo, T.; Mason, L.; Sharma, A., Gluon Scattering on Self-Dual Radiative Gauge Fields, Commun. Math. Phys., 399, 1731, 2023 · Zbl 1522.81675 · doi:10.1007/s00220-022-04582-9
[43] T. Adamo, L. Mason and A. Sharma, Graviton scattering in self-dual radiative space-times, Class. Quant. Grav.40 (2023) 095002 [arXiv:2203.02238] [INSPIRE]. · Zbl 1521.81188
[44] T. Adamo, L. Mason and A. Sharma, Twistor sigma models for quaternionic geometry and graviton scattering, arXiv:2103.16984 [INSPIRE]. · Zbl 07880775
[45] Bogna, G.; Mason, L., Yang-Mills form factors on self-dual backgrounds, JHEP, 08, 165, 2023 · Zbl 07749040 · doi:10.1007/JHEP08(2023)165
[46] Adamo, T.; Bu, W.; Casali, E.; Sharma, A., All-order celestial OPE in the MHV sector, JHEP, 03, 252, 2023 · doi:10.1007/JHEP03(2023)252
[47] Ren, L.; Schreiber, A.; Sharma, A.; Wang, D., All-order celestial OPE from on-shell recursion, JHEP, 10, 080, 2023 · Zbl 07774685 · doi:10.1007/JHEP10(2023)080
[48] Witten, E., Perturbative gauge theory as a string theory in twistor space, Commun. Math. Phys., 252, 189, 2004 · Zbl 1105.81061 · doi:10.1007/s00220-004-1187-3
[49] N. Berkovits, An alternative string theory in twistor space for N = 4 superYang-Mills, Phys. Rev. Lett.93 (2004) 011601 [hep-th/0402045] [INSPIRE].
[50] Berkovits, N.; Witten, E., Conformal supergravity in twistor-string theory, JHEP, 08, 009, 2004 · doi:10.1088/1126-6708/2004/08/009
[51] Mason, LJ; Skinner, D., Heterotic twistor-string theory, Nucl. Phys. B, 795, 105, 2008 · Zbl 1219.81216 · doi:10.1016/j.nuclphysb.2007.11.010
[52] D. Skinner, Twistor strings for \(\mathcal{N} = 8\) supergravity, JHEP04 (2020) 047 [arXiv:1301.0868] [INSPIRE]. · Zbl 1436.83101
[53] Eastwood, M.; Tod, P., Edth-a differential operator on the sphere, Math. Proc. Cambridge Phil. Soc., 92, 317, 1982 · Zbl 0511.53026 · doi:10.1017/S0305004100059971
[54] G.A.J. Sparling, Dynamically Broken Symmetry and Global Yang-Mills in Minkowski Space, in L.J. Mason and L.P. Hughston eds., Further Advances in Twistor Theory vol. 231, ch. 1.4.2, Pitman Research Notes in Mathematics (1990). · Zbl 0693.53022
[55] Adamo, T.; Casali, E.; Skinner, D., Perturbative gravity at null infinity, Class. Quant. Grav., 31, 225008, 2014 · Zbl 1304.81146 · doi:10.1088/0264-9381/31/22/225008
[56] Y. Geyer, A.E. Lipstein and L. Mason, Ambitwistor strings at null infinity and (subleading) soft limits, Class. Quant. Grav.32 (2015) 055003 [arXiv:1406.1462] [INSPIRE]. · Zbl 1309.83090
[57] Adamo, T.; Casali, E., Perturbative gauge theory at null infinity, Phys. Rev. D, 91, 125022, 2015 · doi:10.1103/PhysRevD.91.125022
[58] Adamo, T.; Kol, U., Classical double copy at null infinity, Class. Quant. Grav., 39, 105007, 2022 · Zbl 1496.83005 · doi:10.1088/1361-6382/ac635e
[59] M.G.T. van der Burg, Gravitational Waves in General Relativity 10. Asymptotic expansions for the Einstein-Maxwell field, Proc. Roy. Soc. Lond.A310 (1969) 221.
[60] Exton, AR; Newman, ET; Penrose, R., Conserved quantities in the Einstein-Maxwell theory, J. Math. Phys., 10, 1566, 1969 · doi:10.1063/1.1665006
[61] Ashtekar, A.; Streubel, M., Symplectic Geometry of Radiative Modes and Conserved Quantities at Null Infinity, Proc. Roy. Soc. Lond. A, 376, 585, 1981 · doi:10.1098/rspa.1981.0109
[62] Strominger, A., Asymptotic Symmetries of Yang-Mills Theory, JHEP, 07, 151, 2014 · Zbl 1333.81273 · doi:10.1007/JHEP07(2014)151
[63] Barnich, G.; Lambert, P-H, Einstein-Yang-Mills theory: Asymptotic symmetries, Phys. Rev. D, 88, 103006, 2013 · doi:10.1103/PhysRevD.88.103006
[64] Newman, ET, Source-Free Yang-Mills Theories, Phys. Rev. D, 18, 2901, 1978 · doi:10.1103/PhysRevD.18.2901
[65] Goldberg, JN, Selfdual gauge fields, Phys. Rev. D, 20, 1909, 1979 · doi:10.1103/PhysRevD.20.1909
[66] Newman, ET, Selfdual gauge fields, Phys. Rev. D, 22, 3023, 1980 · doi:10.1103/PhysRevD.22.3023
[67] Ward, RS, On selfdual gauge fields, Phys. Lett. A, 61, 81, 1977 · Zbl 0964.81519 · doi:10.1016/0375-9601(77)90842-8
[68] Penrose, R., Solutions of the zero-rest-mass equations, J. Math. Phys., 10, 38, 1969 · doi:10.1063/1.1664756
[69] Eastwood, MG; Penrose, R.; Wells, RO, Cohomology and Massless Fields, Commun. Math. Phys., 78, 305, 1981 · Zbl 0465.58031 · doi:10.1007/BF01942327
[70] Adamo, T.; Bullimore, M.; Mason, L.; Skinner, D., Scattering Amplitudes and Wilson Loops in Twistor Space, J. Phys. A, 44, 454008, 2011 · Zbl 1270.81129 · doi:10.1088/1751-8113/44/45/454008
[71] T. Adamo, E. Casali and S. Nekovar, Yang-Mills theory from the worldsheet, Phys. Rev. D98 (2018) 086022 [arXiv:1807.09171] [INSPIRE]. · Zbl 1382.83035
[72] R.K. Sachs, Gravitational waves in general relativity. 6. The outgoing radiation condition, Proc. Roy. Soc. Lond. A264 (1961) 309 [INSPIRE]. · Zbl 0098.19204
[73] P. Jordan, J. Ehlers and R.K. Sachs, Beiträge zur Theorie der reinen Gravitationsstrahlung, Mainz Akademie Wissenschaften Mathematisch Naturwissenschaftliche Klasse1 (1961) 1.
[74] Newman, E.; Penrose, R., An approach to gravitational radiation by a method of spin coefficients, J. Math. Phys., 3, 566, 1962 · Zbl 0108.40905 · doi:10.1063/1.1724257
[75] Friedrich, H., On purely radiative space-times, Commun. Math. Phys., 103, 35, 1986 · Zbl 0584.53038 · doi:10.1007/BF01464281
[76] Newman, ET, Heaven and Its Properties, Gen. Rel. Grav., 7, 107, 1976 · doi:10.1007/BF00762018
[77] Hansen, RO; Newman, ET; Penrose, R.; Tod, KP, The Metric and Curvature Properties of H Space, Proc. Roy. Soc. Lond. A, 363, 445, 1978 · Zbl 0391.53014 · doi:10.1098/rspa.1978.0177
[78] Penrose, R., Nonlinear Gravitons and Curved Twistor Theory, Gen. Rel. Grav., 7, 31, 1976 · Zbl 0354.53025 · doi:10.1007/BF00762011
[79] Sachs, R., Asymptotic symmetries in gravitational theory, Phys. Rev., 128, 2851, 1962 · Zbl 0114.21202 · doi:10.1103/PhysRev.128.2851
[80] H. Bondi, M.G.J. van der Burg and A.W.K. Metzner, Gravitational waves in general relativity. 7. Waves from axisymmetric isolated systems, Proc. Roy. Soc. Lond. A269 (1962) 21 [INSPIRE]. · Zbl 0106.41903
[81] R.K. Sachs, Gravitational waves in general relativity. 8. Waves in asymptotically flat space-times, Proc. Roy. Soc. Lond. A270 (1962) 103 [INSPIRE]. · Zbl 0101.43605
[82] Hitchin, NJ, Linear field equations on selfdual spaces, Proc. Roy. Soc. Lond. A, 370, 173, 1980 · Zbl 0436.53058 · doi:10.1098/rspa.1980.0028
[83] Bonnor, WB, Spherical gravitational waves, Phil. Trans. Roy. Soc. Lond. A, A251, 233, 1959 · Zbl 0084.43906
[84] Bonnor, WB; Rotenberg, MA, Gravitational Waves from Isolated Sources, Proc. Roy. Soc. Lond. A, 289, 247, 1966 · doi:10.1098/rspa.1966.0010
[85] Thorne, KS, Multipole Expansions of Gravitational Radiation, Rev. Mod. Phys., 52, 299, 1980 · doi:10.1103/RevModPhys.52.299
[86] Blanchet, L.; Damour, T., Tail Transported Temporal Correlations in the Dynamics of a Gravitating System, Phys. Rev. D, 37, 1410, 1988 · doi:10.1103/PhysRevD.37.1410
[87] F. Cachazo, Resultants and Gravity Amplitudes, arXiv:1301.3970 [INSPIRE].
[88] M. Bullimore, New Formulae for Gravity Amplitudes: Parity Invariance and Soft Limits, arXiv:1207.3940 [INSPIRE].
[89] Cachazo, F.; Mason, L.; Skinner, D., Gravity in Twistor Space and its Grassmannian Formulation, SIGMA, 10, 051, 2014 · Zbl 1296.81160
[90] Plebanski, JF, On the separation of Einsteinian substructures, J. Math. Phys., 18, 2511, 1977 · Zbl 0368.53032 · doi:10.1063/1.523215
[91] Altarelli, G.; Parisi, G., Asymptotic Freedom in Parton Language, Nucl. Phys. B, 126, 298, 1977 · doi:10.1016/0550-3213(77)90384-4
[92] Mangano, ML; Parke, SJ, Multiparton amplitudes in gauge theories, Phys. Rept., 200, 301, 1991 · doi:10.1016/0370-1573(91)90091-Y
[93] T.G. Birthwright, E.W.N. Glover, V.V. Khoze and P. Marquard, Multi-gluon collinear limits from MHV diagrams, JHEP05 (2005) 013 [hep-ph/0503063] [INSPIRE].
[94] Adamo, T.; Bu, W.; Casali, E.; Sharma, A., Celestial operator products from the worldsheet, JHEP, 06, 052, 2022 · Zbl 1522.81433 · doi:10.1007/JHEP06(2022)052
[95] Bern, Z.; Dixon, LJ; Perelstein, M.; Rozowsky, JS, Multileg one loop gravity amplitudes from gauge theory, Nucl. Phys. B, 546, 423, 1999 · Zbl 0953.83006 · doi:10.1016/S0550-3213(99)00029-2
[96] White, CD, Factorization Properties of Soft Graviton Amplitudes, JHEP, 05, 060, 2011 · Zbl 1296.83030 · doi:10.1007/JHEP05(2011)060
[97] Akhoury, R.; Saotome, R.; Sterman, G., Collinear and Soft Divergences in Perturbative Quantum Gravity, Phys. Rev. D, 84, 104040, 2011 · doi:10.1103/PhysRevD.84.104040
[98] A. Hodges, A simple formula for gravitational MHV amplitudes, arXiv:1204.1930 [INSPIRE].
[99] Ward, RS, A class of self-dual solutions of Einstein’s equations, Proc. Roy. Soc. Lond. A, 363, 289, 1978 · Zbl 0404.53016 · doi:10.1098/rspa.1978.0170
[100] Curtis, WD; Miller, FR; Lerner, DE, Complex p p Waves and the Nonlinear Graviton Construction, J. Math. Phys., 19, 2024, 1978 · Zbl 0441.53060 · doi:10.1063/1.523578
[101] Porter, JR, The nonlinear graviton: superposition of plane waves, Gen. Rel. Grav., 14, 1023, 1982 · Zbl 0491.53061 · doi:10.1007/BF00756284
[102] Kato, M.; Ogawa, K., Covariant Quantization of String Based on BRS Invariance, Nucl. Phys. B, 212, 443, 1983 · doi:10.1016/0550-3213(83)90680-6
[103] Friedan, D., On Two-dimensional Conformal Invariance and the Field Theory of String, Phys. Lett. B, 162, 102, 1985 · doi:10.1016/0370-2693(85)91069-X
[104] Banks, T.; Nemeschansky, D.; Sen, A., Dilaton Coupling and BRST Quantization of Bosonic Strings, Nucl. Phys. B, 277, 67, 1986 · doi:10.1016/0550-3213(86)90432-3
[105] J. Polchinski, String theory. Vol. 1: An introduction to the bosonic string, Cambridge University Press (2007) [doi:10.1017/CBO9780511816079] [INSPIRE]. · Zbl 1246.81199
[106] G.R. Brown, J. Gowdy and B. Spence, Self-dual fields on self-dual backgrounds and the double copy, Phys. Rev. D109 (2024) 026009 [arXiv:2307.11063] [INSPIRE].
[107] Chung, V., Infrared Divergence in Quantum Electrodynamics, Phys. Rev., 140, B1110, 1965 · doi:10.1103/PhysRev.140.B1110
[108] T.W.B. Kibble, Coherent soft-photon states and infrared divergences. ii. mass-shell singularities of green’s functions, Phys. Rev.173 (1968) 1527 [INSPIRE].
[109] T.W.B. Kibble, Coherent soft-photon states and infrared divergences. iii. asymptotic states and reduction formulas, Phys. Rev.174 (1968) 1882 [INSPIRE].
[110] T.W.B. Kibble, Coherent soft-photon states and infrared divergences. iv. the scattering operator, Phys. Rev.175 (1968) 1624 [INSPIRE].
[111] Kulish, PP; Faddeev, LD, Asymptotic conditions and infrared divergences in quantum electrodynamics, Theor. Math. Phys., 4, 745, 1970 · Zbl 0197.26201 · doi:10.1007/BF01066485
[112] D. Kapec, M. Perry, A.-M. Raclariu and A. Strominger, Infrared Divergences in QED, Revisited, Phys. Rev. D96 (2017) 085002 [arXiv:1705.04311] [INSPIRE].
[113] W. Bu, E. Casali and A. Sharma, Sourced Goldstones as Wilson line dressings from twistor space, to appear.
[114] Adamo, T.; Casali, E.; Mason, L.; Nekovar, S., Plane wave backgrounds and colour-kinematics duality, JHEP, 02, 198, 2019 · Zbl 1411.81216 · doi:10.1007/JHEP02(2019)198
[115] Hodges, A., New expressions for gravitational scattering amplitudes, JHEP, 07, 075, 2013 · Zbl 1342.83480 · doi:10.1007/JHEP07(2013)075
[116] Cachazo, F.; Skinner, D., Gravity from Rational Curves in Twistor Space, Phys. Rev. Lett., 110, 161301, 2013 · doi:10.1103/PhysRevLett.110.161301
[117] Adamo, T., Gravity with a cosmological constant from rational curves, JHEP, 11, 098, 2015 · Zbl 1388.81263 · doi:10.1007/JHEP11(2015)098
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.