×

Twistorial monopoles & chiral algebras. (English) Zbl 07748963

Summary: We initiate the study of how the insertion of magnetically charged states in 4d self-dual gauge theories impacts the 2d chiral algebras supported on the celestial sphere at asymptotic null infinity, from the point of view of the 4d/2d twistorial correspondence introduced by Costello and the second author. By reducing the 6d twistorial theory to a 3d holomorphic-topological theory with suitable boundary conditions, we can motivate certain non-perturbative enhancements of the celestial chiral algebra corresponding to extensions by modules arising from 3d boundary monopole operators. We also identify the insertion of 4d (non-abelian) monopoles with families of spectral flow automorphisms of the celestial chiral algebra.

MSC:

81-XX Quantum theory

References:

[1] Guevara, A.; Himwich, E.; Pate, M.; Strominger, A., Holographic symmetry algebras for gauge theory and gravity, JHEP, 11, 152 (2021) · Zbl 1521.81144 · doi:10.1007/JHEP11(2021)152
[2] A. Strominger, w_1+∞and the Celestial Sphere, arXiv:2105.14346 [INSPIRE].
[3] Ball, A.; Narayanan, SA; Salzer, J.; Strominger, A., Perturbatively exact w_1+∞asymptotic symmetry of quantum self-dual gravity, JHEP, 01, 114 (2022) · Zbl 1521.81284 · doi:10.1007/JHEP01(2022)114
[4] Bhardwaj, R., Loop-level gluon OPEs in celestial holography, JHEP, 11, 171 (2022) · Zbl 1536.81173 · doi:10.1007/JHEP11(2022)171
[5] Monteiro, R., Celestial chiral algebras, colour-kinematics duality and integrability, JHEP, 01, 092 (2023) · Zbl 1540.81090 · doi:10.1007/JHEP01(2023)092
[6] Costello, K.; Paquette, NM, Celestial holography meets twisted holography: 4d amplitudes from chiral correlators, JHEP, 10, 193 (2022) · Zbl 1534.83110 · doi:10.1007/JHEP10(2022)193
[7] K. Costello and N.M. Paquette, Associativity of One-Loop Corrections to the Celestial Operator Product Expansion, Phys. Rev. Lett.129 (2022) 231604 [arXiv:2204.05301] [INSPIRE].
[8] Fernández, VE, One-loop corrections to the celestial chiral algebra from Koszul Duality, JHEP, 04, 124 (2023) · Zbl 07694012 · doi:10.1007/JHEP04(2023)124
[9] Bittleston, R., On the associativity of 1-loop corrections to the celestial operator product in gravity, JHEP, 01, 018 (2023) · Zbl 1540.83016 · doi:10.1007/JHEP01(2023)018
[10] K.J. Costello, Quantizing local holomorphic field theories on twistor space, arXiv:2111.08879 [INSPIRE].
[11] Costello, K.; Li, S., Anomaly cancellation in the topological string, Adv. Theor. Math. Phys., 24, 1723 (2020) · Zbl 1527.81102 · doi:10.4310/ATMP.2020.v24.n7.a2
[12] K. Costello, N.M. Paquette and A. Sharma, Top-Down Holography in an Asymptotically Flat Spacetime, Phys. Rev. Lett.130 (2023) 061602 [arXiv:2208.14233] [INSPIRE].
[13] K. Costello and D. Gaiotto, Twisted Holography, arXiv:1812.09257 [INSPIRE].
[14] Costello, K.; Paquette, NM, Twisted Supergravity and Koszul Duality: A case study in AdS_3, Commun. Math. Phys., 384, 279 (2021) · Zbl 1465.81064 · doi:10.1007/s00220-021-04065-3
[15] B. Bakalov and V. Kac, Field algebras, Int. Math. Res. Not.2003 (2003) 123. · Zbl 1032.17045
[16] A. Strominger, Magnetic Corrections to the Soft Photon Theorem, Phys. Rev. Lett.116 (2016) 031602 [arXiv:1509.00543] [INSPIRE]. · Zbl 1356.81175
[17] D. Kapec and P. Mitra, Shadows and soft exchange in celestial CFT, Phys. Rev. D105 (2022) 026009 [arXiv:2109.00073] [INSPIRE].
[18] Bershadsky, M.; Cecotti, S.; Ooguri, H.; Vafa, C., Kodaira-Spencer theory of gravity and exact results for quantum string amplitudes, Commun. Math. Phys., 165, 311 (1994) · Zbl 0815.53082 · doi:10.1007/BF02099774
[19] M. Aganagic, K. Costello, J. McNamara and C. Vafa, Topological Chern-Simons/Matter Theories, arXiv:1706.09977 [INSPIRE].
[20] Aharony, O., Aspects of N = 2 supersymmetric gauge theories in three-dimensions, Nucl. Phys. B, 499, 67 (1997) · Zbl 0934.81063 · doi:10.1016/S0550-3213(97)00323-4
[21] Intriligator, K.; Seiberg, N., Aspects of 3d N = 2 Chern-Simons-Matter Theories, JHEP, 07, 079 (2013) · Zbl 1342.81593 · doi:10.1007/JHEP07(2013)079
[22] Gadde, A.; Gukov, S.; Putrov, P., Walls, Lines, and Spectral Dualities in 3d Gauge Theories, JHEP, 05, 047 (2014) · doi:10.1007/JHEP05(2014)047
[23] Gadde, A.; Gukov, S.; Putrov, P., Fivebranes and 4-manifolds, Prog. Math., 319, 155 (2016) · Zbl 1373.81295 · doi:10.1007/978-3-319-43648-7_7
[24] T. Okazaki and S. Yamaguchi, Supersymmetric boundary conditions in three-dimensional N = 2 theories, Phys. Rev. D87 (2013) 125005 [arXiv:1302.6593] [INSPIRE]. · Zbl 1325.81146
[25] Dimofte, T.; Gaiotto, D.; Paquette, NM, Dual boundary conditions in 3d SCFT’s, JHEP, 05, 060 (2018) · Zbl 1391.81157 · doi:10.1007/JHEP05(2018)060
[26] Costello, K.; Dimofte, T.; Gaiotto, D., Boundary Chiral Algebras and Holomorphic Twists, Commun. Math. Phys., 399, 1203 (2023) · Zbl 07678868 · doi:10.1007/s00220-022-04599-0
[27] Zeng, K., Monopole operators and bulk-boundary relation in holomorphic topological theories, SciPost Phys., 14, 153 (2023) · Zbl 07902851 · doi:10.21468/SciPostPhys.14.6.153
[28] Bullimore, M., Vortices and Vermas, Adv. Theor. Math. Phys., 22, 803 (2018) · Zbl 07430942 · doi:10.4310/ATMP.2018.v22.n4.a1
[29] H. Nakajima, Towards a mathematical definition of Coulomb branches of 3-dimensional \(\mathcal{N} = 4\) gauge theories, I, Adv. Theor. Math. Phys.20 (2016) 595 [arXiv:1503.03676] [INSPIRE]. · Zbl 1433.81121
[30] A. Braverman, M. Finkelberg and H. Nakajima, Towards a mathematical definition of Coulomb branches of 3-dimensional \(\mathcal{N} = 4\) gauge theories, II, Adv. Theor. Math. Phys.22 (2018) 1071 [arXiv:1601.03586] [INSPIRE]. · Zbl 1479.81043
[31] M. Bullimore, T. Dimofte and D. Gaiotto, The Coulomb Branch of 3d \(\mathcal{N} = 4\) Theories, Commun. Math. Phys.354 (2017) 671 [arXiv:1503.04817] [INSPIRE]. · Zbl 1379.81072
[32] S. Alekseev, M. Dedushenko and M. Litvinov, Chiral life on a slab, arXiv:2301.00038 [INSPIRE].
[33] X. Zhu, An introduction to affine Grassmannians and the geometric Satake equivalence, arXiv:1603.05593. · Zbl 1453.14122
[34] A. Ballin, T. Creutzig, T. Dimofte and W. Niu, 3d mirror symmetry of braided tensor categories, arXiv:2304.11001 [INSPIRE].
[35] A. Ballin and W. Niu, 3d Mirror Symmetry and the βγ VOA, arXiv:2202.01223 [doi:10.1142/S0219199722500699] [INSPIRE].
[36] N. Garner and W. Niu, Line Operators in U(1|1) Chern-Simons Theory, arXiv:2304.05414 [INSPIRE].
[37] T. Creutzig and D. Ridout, W-Algebras Extending Affine \(\hat{\mathfrak{gl}} (1|1)\), Springer Proc. Math. Stat.36 (2013) 349 [arXiv:1111.5049] [INSPIRE]. · Zbl 1287.81055
[38] T. Creutzig, S. Kanade and R. McRae, Tensor categories for vertex operator superalgebra extensions, arXiv:1705.05017 [INSPIRE]. · Zbl 1500.17023
[39] Creutzig, T.; McRae, R.; Yang, J., Direct limit completions of vertex tensor categories, Commun. Contemp. Math., 24, 2150033 (2022) · Zbl 1502.17026 · doi:10.1142/S0219199721500334
[40] Gwilliam, O.; Williams, BR, Higher Kac-Moody algebras and symmetries of holomorphic field theories, Adv. Theor. Math. Phys., 25, 129 (2021) · Zbl 1480.81065 · doi:10.4310/ATMP.2021.v25.n1.a4
[41] K. Zeng, Twisted Holography and Celestial Holography from Boundary Chiral Algebra, arXiv:2302.06693 [INSPIRE].
[42] Donnay, L.; Pasterski, S.; Puhm, A., Goldilocks modes and the three scattering bases, JHEP, 06, 124 (2022) · Zbl 1522.81484 · doi:10.1007/JHEP06(2022)124
[43] L. Freidel, D. Pranzetti and A.-M. Raclariu, A discrete basis for celestial holography, arXiv:2212.12469 [INSPIRE].
[44] Mason, LJ; Skinner, D., The Complete Planar S-matrix of N = 4 SYM as a Wilson Loop in Twistor Space, JHEP, 12, 018 (2010) · Zbl 1294.81122 · doi:10.1007/JHEP12(2010)018
[45] T. Adamo, M. Bullimore, L. Mason and D. Skinner, Scattering Amplitudes and Wilson Loops in Twistor Space, J. Phys. A44 (2011) 454008 [arXiv:1104.2890] [INSPIRE]. · Zbl 1270.81129
[46] Bu, W.; Casali, E., The 4d/2d correspondence in twistor space and holomorphic Wilson lines, JHEP, 11, 076 (2022) · Zbl 1536.81159 · doi:10.1007/JHEP11(2022)076
[47] Oh, J.; Zhou, Y., Twisted holography of defect fusions, SciPost Phys., 10, 105 (2021) · doi:10.21468/SciPostPhys.10.5.105
[48] D. Gaiotto and J. Oh, Aspects of Ω-deformed M-theory, arXiv:1907.06495 [INSPIRE].
[49] Gaiotto, D.; Rapcak, M., Miura operators, degenerate fields and the M2-M5 intersection, JHEP, 01, 086 (2022) · Zbl 1521.81342 · doi:10.1007/JHEP01(2022)086
[50] D. Zwanziger, Angular distributions and a selection rule in charge-pole reactions, Phys. Rev. D6 (1972) 458 [INSPIRE].
[51] Csaki, C., Scattering amplitudes for monopoles: pairwise little group and pairwise helicity, JHEP, 08, 029 (2021) · doi:10.1007/JHEP08(2021)029
[52] Csáki, C., Dressed vs. pairwise states, and the geometric phase of monopoles and charges, JHEP, 02, 211 (2023) · Zbl 1541.81197 · doi:10.1007/JHEP02(2023)211
[53] M. van Beest et al., Monopoles, Scattering, and Generalized Symmetries, arXiv:2306.07318 [INSPIRE].
[54] Donnay, L.; Puhm, A.; Strominger, A., Conformally Soft Photons and Gravitons, JHEP, 01, 184 (2019) · Zbl 1409.81116 · doi:10.1007/JHEP01(2019)184
[55] E. Crawley, A. Guevara, E. Himwich and A. Strominger, Self-Dual Black Holes in Celestial Holography, arXiv:2302.06661 [INSPIRE].
[56] Kulish, PP; Faddeev, LD, Asymptotic conditions and infrared divergences in quantum electrodynamics, Theor. Math. Phys., 4, 745 (1970) · Zbl 0197.26201 · doi:10.1007/BF01066485
[57] V. Chung, Infrared Divergence in Quantum Electrodynamics, Phys. Rev.140 (1965) B1110 [INSPIRE].
[58] Arkani-Hamed, N.; Pate, M.; Raclariu, A-M; Strominger, A., Celestial amplitudes from UV to IR, JHEP, 08, 062 (2021) · doi:10.1007/JHEP08(2021)062
[59] Choi, S.; Akhoury, R., Soft Photon Hair on Schwarzschild Horizon from a Wilson Line Perspective, JHEP, 12, 074 (2018) · Zbl 1405.83026 · doi:10.1007/JHEP12(2018)074
[60] G. Sparling, Dynamically broken symmetry and global yang-mills in minkowski space, Further Advances in Twistor Theory1 (1977) 171.
[61] R. Penrose and G. Sparling, The Twistor Quadrille: A Line Bundle Based on the Coulomb Field, in Advances in Twistor Theory, L.J. Mason, L.P. Hughston, P.Z. Kobak and K. Pulverer eds., CRC Press (1979).
[62] R.S. Ward and R.O. Wells, Twistor geometry and field theory, Cambridge University Press (1991) [doi:10.1017/CBO9780511524493] [INSPIRE]. · Zbl 0729.53068
[63] A. Guevara, Reconstructing Classical Spacetimes from the S-Matrix in Twistor Space, arXiv:2112.05111 [INSPIRE].
[64] Bailey, TN, Twistors and Fields With Sources on Worldlines, Proceedings of the Royal Society of London Series A, 397, 143 (1985) · Zbl 0592.53060
[65] Bullimore, M.; Ferrari, A., Twisted Hilbert Spaces of 3d Supersymmetric Gauge Theories, JHEP, 08, 018 (2018) · Zbl 1396.81196 · doi:10.1007/JHEP08(2018)018
[66] S. Banerjee, P. Pandey and P. Paul, Conformal properties of soft operators: Use of null states, Phys. Rev. D101 (2020) 106014 [arXiv:1902.02309] [INSPIRE]. · Zbl 1435.83009
[67] Banerjee, S.; Pandey, P., Conformal properties of soft-operators. Part II. Use of null-states, JHEP, 02, 067 (2020) · Zbl 1435.83009 · doi:10.1007/JHEP02(2020)067
[68] Pasterski, S.; Puhm, A.; Trevisani, E., Celestial diamonds: conformal multiplets in celestial CFT, JHEP, 11, 072 (2021) · Zbl 1521.81324 · doi:10.1007/JHEP11(2021)072
[69] Geyer, Y.; Mason, L., The SAGEX review on scattering amplitudes Chapter 6: Ambitwistor Strings and Amplitudes from the Worldsheet, J. Phys. A, 55, 443007 (2022) · Zbl 1520.81101 · doi:10.1088/1751-8121/ac8190
[70] Y. Geyer, A.E. Lipstein and L. Mason, Ambitwistor strings at null infinity and (subleading) soft limits, Class. Quant. Grav.32 (2015) 055003 [arXiv:1406.1462] [INSPIRE]. · Zbl 1309.83090
[71] R. Bittleston, A. Sharma and D. Skinner, Quantizing the non-linear graviton, arXiv:2208.12701 [INSPIRE].
[72] Adamo, T.; Mason, L.; Sharma, A., Celestial w_1+∞Symmetries from Twistor Space, SIGMA, 18, 016 (2022) · Zbl 1489.83067
[73] L. Mason, Gravity from holomorphic discs and celestial Lw_1+∞symmetries, arXiv:2212.10895 [INSPIRE].
[74] G. Sparling, The non-linear graviton representing the analogue of schwarzschild or kerr black holes, Twistor Newslett.1 (1976) 14.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.