×

Weighted infinitesimal unitary bialgebras on free monoid algebras. (English) Zbl 1493.16054

Throughout, all algebras, coalgebras and modules are taken over a unitary commutative ring \(k\).
In this context, an infinitesimal bialgebra of weight \(\lambda\in k\) is a module \(A\) which is simultaneously an algebra (with multiplication \(\cdot\)) and a coalgebra (with comultiplication \(\Delta\)) such that \[\Delta(ab) = a\cdot \Delta(b) + \Delta(a) \cdot b + \lambda(a\otimes b) \] for all \(a, b\in A\). Note that the authors do not require algebras (resp. coalgebras) to have a unit (resp. a counit): if \(A\) is additionally a unitary algebra, then it is an infinitesimal unitary bialgebra of weight \(\lambda\). (The case when \(A\) is both unitary and counitary, and \(\lambda = 0\), is known to be trivial: see Remark 2.3(2).)
This notion is a generalisation of several other definitions of infinitesimal bialgebras in the literature: references to previous work on the specific cases \(\lambda = 0\) and \(\lambda = -1\) are given in the Introduction, and Remark 2.3(3) explains how to reduce from the case \(\lambda\in k^\times\) to the case \(\lambda = -1\).
Any unitary algebra \(A\) can be made into an infinitesimal unitary bialgebra of weight 0 in a trivial way by setting \(\Delta = 0\). In Example 2.4, the authors list three other known examples with nontrivial coproducts: two of weight 0 (the polynomial algebra \(k[x_1, x_2, \dots]\), and the path algebra \(kQ\) of a quiver \(Q\)) and one of weight -1 (the tensor algebra \(T(V)\) for a \(k\)-module \(V\)).
The main result of §2.2 is Theorem 2.11: if \(M^*\) is the free monoid on the set \(M\), \(kM^*\) is its monoid algebra over \(k\), and \(\lambda \in k\) is arbitrary, then the comultiplication \(\Delta_\varepsilon\) defined recursively by \[ \begin{cases} \Delta_\varepsilon(1) = -\lambda(1\otimes 1),\\ \Delta_\varepsilon(a_1) = 1\otimes 1,\\ \Delta_\varepsilon(a_1 w) = a_1\cdot \Delta_\varepsilon(w) + \Delta_\varepsilon(a_1) \cdot w + \lambda a_1\otimes w, \end{cases}\] (for all \(a_1\in M\) and \(w\in M^*\)) defines the structure of a weighted infinitesimal unitary bialgebra of weight \(\lambda\) on \(kM^*\). This allows the authors to deduce in Theorem 2.19 that this \(kM^*\) has the structure of a pre-Lie algebra, and hence also of a Lie algebra.
An explicit calculation of \(\Delta_\varepsilon(x^n)\) in the simplest nontrivial case, when \(M = \{x\}\) and \(kM^* = k[x]\), is recorded as Example 2.4(5).
In Theorem 3.12, it is shown that (in the special case when \(\lambda = 0\) and \(k\) is a field of characteristic \(0\)) \(kM^*\) may be given a bijective antipode, making it into an infinitesimal unitary Hopf algebra (of weight 0) in the sense of Aguiar, but with a coproduct that appears to be new.

MSC:

16W99 Associative rings and algebras with additional structure
16T10 Bialgebras
17B60 Lie (super)algebras associated with other structures (associative, Jordan, etc.)
20M05 Free semigroups, generators and relations, word problems
Full Text: DOI

References:

[1] M. Aguiar,Infinitesimal Hopf algebras, in: New Trends in Hopf Algebra Theory (La Falda, 1999), Contemp. Math. 267, Amer. Math. Soc., Providence, RI, 2000, 1-29. · Zbl 0982.16028
[2] M. Aguiar,On the associative analog of Lie bialgebras, J. Algebra 244 (2001), 492-532. · Zbl 0991.16033
[3] M. Aguiar,Infinitesimal Hopf algebras and the cd-index of polytopes, in: Geometric Combinatorics (San Francisco, CA/Davis, CA, 2000), Discrete Comput. Geom. 27 (2002), 3-28. · Zbl 1011.05061
[4] M. Aguiar,Infinitesimal bialgebras, pre-Lie and dendriform algebras, in: Hopf Algebras, Lecture Notes in Pure Appl. Math. 237, Dekker, New York, 2004, 1-33. · Zbl 1059.16027
[5] H. H. An and C. M. Bai,From Rota-Baxter algebras to pre-Lie algebras, J. Phys. A 41 (2008). · Zbl 1132.81031
[6] A. Andrada and S. Salamon,Complex product structures on Lie algebras, Forum Math. 17 (2005), 261-295. · Zbl 1094.17006
[7] C. M. Bai,Introduction to pre-Lie algebras, http://einspem.upm.edu.my/equals8/ CSS/pre-Lie.pdf.
[8] C. M. Bai,A unified algebraic approach to the classical Yang-Baxter equation, J. Phys. A 40 (2007), 11073-11082. · Zbl 1118.17008
[9] C. M. Bai,Left-symmetric bialgebras and an analogue of the classical Yang-Baxter equation, Comm. Contemp. Math. 10 (2008), 221-260. · Zbl 1173.17025
[10] C. M. Bai, O. Bellier, L. Guo and X. Ni,Splitting of operations, Manin products, and Rota-Baxter operators, Int. Math. Res. Notices 2013, 485-524. · Zbl 1314.18010
[11] A. A. Balinski˘ı and S. P. Novikov,Poisson brackets of hydrodynamic type, Frobenius algebras and Lie algebras, Dokl. Akad. Nauk SSSR 283 (1985), 1036-1039 (in Russian). · Zbl 0606.58018
[12] M. Bordemann,Generalized Lax pairs, the modified classical Yang-Baxter equation, and affine geometry of Lie groups, Comm. Math. Phys. 135 (1990), 201-216. · Zbl 0714.58025
[13] F. Chapoton and M. Livernet,Pre-Lie algebras and the rooted trees operad, Int. Math. Res. Notices 2001, 395-408. · Zbl 1053.17001
[14] V. Chari and A. Pressley,A Guide to Quantum Groups, Cambridge Univ. Press, Cambridge, 1994. · Zbl 0839.17009
[15] A. Connes and D. Kreimer,Hopf algebras, renormalization and non-commutative geometry, Comm. Math. Phys. 199 (1998), 203-242. · Zbl 0932.16038
[16] K. R. Davidson and D. R. Pitts,Invariant subspaces and hyper-reflexivity for free semigroup algebras, Proc. London Math. Soc. 78 (1999), 401-430. · Zbl 0997.46042
[17] K. Ebrahimi-Fard,Rota-Baxter algebras and the Hopf algebra of renormalization, Ph.D. thesis, Bonn Univ., 2006.
[18] K. Ebrahimi-Fard, J. M. Gracia-Bondia and F. Patras,Rota-Baxter algebras and new combinatorial identities, Lett. Math. Phys. 81 (2007), 61-75. · Zbl 1121.05008
[19] P. Etingof and A. Soloviev,Quantization of geometric classicalr-matrices, Math. Res. Lett. 6 (1999), 223-228. · Zbl 0999.17025
[20] L. Foissy,The infinitesimal Hopf algebra and the poset of planar forests, J. Algebraic Combin. 30 (2009), 277-309. · Zbl 1192.16033
[21] L. Foissy,The infinitesimal Hopf algebra and the operads of planar forests, Int. Math. Res. Notices 2010, 395-435. · Zbl 1226.18012
[22] X. Gao and Y. Zhang,Weighted infinitesimal bialgebras, arXiv:1810.10790v3 (2020).
[23] M. Gerstenhaber,The cohomology structure of an associative ring, Ann. of Math. (2) 78 (1963), 267-288. · Zbl 0131.27302
[24] I. Z. Golubchik and V. V. Sokolov,Generalized operator Yang-Baxter equations, integrable ODEs and nonassociative algebras, J. Nonlinear Math. Phys. 7 (2000), 184-197. · Zbl 1119.37318
[25] J. M. Howie,Fundamentals of Semigroup Theory, Oxford Univ. Press, New York, 1995. · Zbl 0835.20077
[26] S. Joni and G.-C. Rota,Coalgebras and bialgebras in combinatorics, Stud. Appl. Math. 61 (1979), 93-139. · Zbl 0471.05020
[27] H. Kim,Complete left-invariant affine structures on nilpotent Lie groups, J. Differential Geom. 24 (1986), 373-394. · Zbl 0591.53045
[28] X. X. Li, D. P. Hou and C. M. Bai,Rota-Baxter operators on pre-Lie algebras, J. Nonlinear Math. Phys. 14 (2007), 269-289. · Zbl 1203.17016
[29] J.-L. Loday and M. O. Ronco,On the structure of cofree Hopf algebras, J. Reine Angew. Math. 592 (2006), 123-155. · Zbl 1096.16019
[30] D. Manchon,A short survey on pre-Lie algebras, in: Noncommutative Geometry and Physics: Renormalisation, Motives, Index Theory, ESI Lect. Math. Phys., Eur. Math. Soc., Zürich, 2011, 89-102. · Zbl 1278.17001
[31] S. Matt,Pre-Lie algebras and incidence categories of colored rooted trees, arXiv: 1007.4784 (2010).
[32] A. Medina,Flat left-invariant connections adapted to the automorphism structure of a Lie group, J. Differential Geom. 16 (1981), 445-474. · Zbl 0486.53026
[33] O. Ogievetsky and T. Popov,R-matrices in rime, Adv. Theor. Math. Phys. 14 (2010), 439-505. · Zbl 1208.81118
[34] J. Okniński,Semigroup Algebras, Monogr. Textbooks Pure Appl. Math. 138, Dekker, New York, 1991. · Zbl 0725.16001
[35] J. Pei, C. M. Bai and L. Guo,Splitting of operads and Rota-Baxter operators on operads, Appl. Categ. Structures 25 (2017), 505-538. · Zbl 1423.18031
[36] E. B. Vinberg,The theory of homogeneous convex cones, Trudy Moskov. Mat. Obshch. 12 (1963), 303-358 (in Russian). · Zbl 0138.43301
[37] Y. Zhang, D. Chen, X. Gao and Y. F. Luo,Weighted infinitesimal unitary bialgebras on rooted forests and weighted cocycles, Pacific J. Math. 302 (2019), 741-766. · Zbl 1435.16005
[38] Y. Zhang, X. Gao and Y. F. Luo,Weighted infinitesimal unitary bialgebras of rooted forests, symmetric cocycles and pre-Lie algebras, J. Algebraic Combin. (online, 2020). · Zbl 1476.16041
[39] Y. Zhang, J. W. Zheng and Y. F. Luo,Weighted infinitesimal unitary bialgebras, preLie, matrix algebras and polynomial algebras, Comm. Algebra 47 (2019), 5164-5181. · Zbl 1436.16043
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.