×

Solving convolution singular integral equations with reflection and translation shifts utilizing Riemann-Hilbert approach. (English) Zbl 07885960

Summary: In this paper, method of solution for some kinds of convolution singular integral equations with reflection will be discussed in class {0}. By means of the theory of Fourier analysis and the theory of boundary value problems of analytic functions, such equations can be transformed into Riemann boundary value problems (i.e., Riemann-Hilbert problems) with nodes and reflection, or a system of linear algebraic equations. In spite of the classical method for solution, we are to give a new method, by which analytic solutions and conditions of Noether solvability are obtained respectively. At the end of this paper, we propose two kinds of convolution singular integral equations with reflections and a finite set of translation shifts.

MSC:

45E10 Integral equations of the convolution type (Abel, Picard, Toeplitz and Wiener-Hopf type)
45E05 Integral equations with kernels of Cauchy type
30E25 Boundary value problems in the complex plane
Full Text: DOI

References:

[1] I. Belmoulouda and A. Memoub, On the solvability of a class of nonlinear singu-lar parabolic equation with integral boundary condition, Appl. Math. Comput., 2020, 373, 124999. · Zbl 1433.35178
[2] G. Capobianco, D. Conte and I. Del Prete, Fast Runge-Kutta methods for non-linear convolution systems of Volterra integral equations, Bit Numer. Math., 2007, 47(2), 259-275. · Zbl 1116.65128
[3] L. P. Castro and E. M. Rojas, Explicit solutions of Cauchy singular integral equations with weighted Carleman shift, J. Math. Anal. Appl., 2010, 371(1), 128-134. · Zbl 1198.45004
[4] L. H. Chuan, N. V. Mau and N. M. Tuan, On a class of singular integral equations with the linear fractional Carleman shift and the degenerate kernel, Complex Var. Elliptic Equ., 2008, 53(2), 117-137. · Zbl 1221.45003
[5] L. H. Chuan and N. M. Tuan, On the singular integral equations with Carleman shift in the case of the vanishing coefficient, Acta Mathematica Vietnamica, 2008, 28(5), 13-27.
[6] H. Du and J. Shen, Reproducing kernel method of solving singular integral equa-tion with cosecant kernel, J. Math. Anal. Appl., 2008, 348(1), 308-314. · Zbl 1152.45007
[7] C. Dajana and I. Del Prete, Fast collocation methods for Volterra integral equa-tions of convolution type, J. Comput. Appl. Math., 2006, 196(2), 652-664. · Zbl 1104.65122
[8] F. D. Gakhov and U. I. Chersky, Integral operators of convolution type with discontinuous coefficients, Math, Nachr., 1977, 79, 75-78. · Zbl 0362.45004
[9] Y. Gong, L. T. Leong and T. Qiao, Two integral operators in Clifford analysis, J. Math. Anal. Appl., 2009, 354, 435-444. · Zbl 1182.30082
[10] K. Kant and G. Nelakanti, Approximation methods for second kind weakly singular Volterra integral equations, J. Comput. Appl. Math., 2020, 368, 112531. · Zbl 1441.45003
[11] A. Y. Karlovich, Y. I. Karlovich and A. B. Lebre, Necessary Fredholm condi-tions for weighted singular integral operators with shifts and slowly oscillating data, J. Integral Equations Appl., 2017, 29(3), 365-399. · Zbl 1376.45016
[12] A. Y. Karlovich, Y. I. Karlovich and A. B. Lebre, On a weighted singular integral operator with shifts and slowly oscillating data, Complex Anal. Oper. Theory, 2016, 10(6), 1101-1131. · Zbl 1352.45005
[13] K. Kant and G. Nelakanti, Error analysis of Jacobi-Galerkin method for solv-ing weakly singular Volterra-Hammerstein integral equations, Int. J. Comput. Math., 2020, 97(12), 2395-2420. · Zbl 1483.65217
[14] K. Kant and G. Nelakanti, Approximation methods for second kind weakly singular Volterra integral equations, J. Comput. Appl. Math., 2020, 368, 112531. · Zbl 1441.45003
[15] K. Kant and G. Nelakanti, Galerkin and multi-Galerkin methods for weakly sin-gular Volterra-Hammerstein integral equations and their convergence analysis, Comput. Appl. Math., 2020, 39(2), DOI: 10.1007/s40314-020-1100-5. · Zbl 1449.65362 · doi:10.1007/s40314-020-1100-5
[16] G. S. Litvinchuk, Singular integral equations and boundary value problems with shift, Moscow: Nauka Press, 1978, 202-207.
[17] P. Li, Non-normal type singular integral-differential equations by Riemann-Hilbert approach, J. Math. Anal. Appl., 2020, 483(2), 123643. · Zbl 1443.45004
[18] P. Li, One class of generalized boundary value problem for analytic functions, Bound. Value Probl., 2015, 40. · Zbl 1332.30061
[19] J. Lu, On method of solution for some classes of singular integral equations with convolution, Chin. Ann. of Math., 1987, 8(1), 97-108. · Zbl 0633.45002
[20] J. Lu, Boundary Value Problems for Analytic Functions, Singapore, World Sci., 2004.
[21] G. S. Litvinchuk, Solvability Theory of Boundary Value Problems and Singular Integral Equations with Shift, London: Kluwer Academic Publisers, 2004.
[22] P. Li, Solvability of some classes of singular integral equations of convolution type via Riemann-Hilbert problem, J. Inequal. Appl., 2019, 22. · Zbl 1499.45010
[23] P. Li, Generalized boundary value problems for analytic functions with convo-lutions and its applications, Math. Meth. Appl. Sci., 2019, 42, 2631-2645. · Zbl 1417.30036
[24] P. Li, Two classes of linear equations of discrete convolution type with harmonic singular operators, Complex Var. Elliptic Equ., 2016, 61(1), 67-75. · Zbl 1332.45003
[25] P. Li and G. Ren, Some classes of equations of discrete type with harmonic singular operator and convolution, Appl. Math. Comput., 2016, 284, 185-194. · Zbl 1410.44003
[26] P. Li, Generalized convolution-type singular integral equations, Appl. Math. Comput., 2017, 311, 314-324. · Zbl 1426.45002
[27] P. Li, Some classes of singular integral equations of convolution type in the class of exponentially increasing functions, J. Inequal. Appl., 2017, 307. · Zbl 1386.45005
[28] P. Li and G. Ren, Solvability of singular integro-differential equations via Riemann-Hilbert problem, J. Differential Equations, 2018, 265, 5455-5471. · Zbl 1406.35215
[29] P. Li, Singular integral equations of convolution type with Cauchy kernel in the class of exponentially increasing functions, Appl. Math. Comput., 2019, 344-345, 116-127. · Zbl 1428.45002
[30] P. Li, On solvability of singular integral-differential equations with convolution, J. Appl. Anal. Comput., 2019, 9(3), 1071-1082. · Zbl 1458.45001
[31] P. Li, Solvability theory of convolution singular integral equations via Riemann-Hilbert approach, J. Comput. Appl. Math., 2020, 370(2), 112601. · Zbl 1443.45005
[32] P. Li, Linear BVPs and SIEs for generalized regular functions in Clifford anal-ysis, J. Funct. Spaces, 2018, 10, Article ID: 6967149. · Zbl 1391.30061
[33] P. Li, The solvability and explicit solutions of singular integral-differential equa-tions of non-normal type via Riemann-Hilbert problem, J. Comput. Appl. Math., 2020, 374(2), 112759. · Zbl 1444.45006
[34] P. Li, Existence of solutions for dual singular integral equations with convolution kernels in case of non-normal type, J. Appl. Anal. Comput., 2020, 10(6), 2756-2766. · Zbl 1481.45003
[35] P. Li, The solvability of a kind of generalized Riemann-Hilbert problems on function spaces H * , J. Inequal. Appl., 2020, 234. · Zbl 1503.30096
[36] P. Li, N. Zhang, M. Wang and Y. Zhou, An efficient method for singular integral equations of non-normal type with two convolution kernels, Complex Var. Elliptic Equ., 2021, DOI: 10.1080/17476933.2021.2009817. · Zbl 1511.45003 · doi:10.1080/17476933.2021.2009817
[37] P. Li, Singular integral equations of convolution type with cosecant kernels and periodic coefficients, Math. Probl. Eng., 2017, Article ID: 6148393. · Zbl 1426.30026
[38] P. Li, Singular integral equations of convolution type with Hilbert kernel and a discrete jump problem, Adv. Difference Equ., 2017, 360. · Zbl 1444.45005
[39] N. I. Musknelishvilli, Singular Integral Equations, NauKa, Moscow, 2002.
[40] E. Najafi, Nyström-quasilinearization method and smoothing transformation for the numerical solution of nonlinear weakly singular Fredholm integral equations, J. Comput. Appl. Math., 2020, 368, 112538. · Zbl 1446.65209
[41] G. Ren and X. Wang, Caratheodory theorems for slice regular functions, Com-plex Anal. Oper. Theory., 2015, 9(5), 1229-1244. · Zbl 1322.30019
[42] G. Ren, U. Kaehler, J. Shi and C. Liu, Hardy-Littlewood inequalities for frac-tional derivatives of invariant harmonic functions, Complex Anal. Oper. The-ory., 2012, 6(2), 373-396. · Zbl 1277.26044
[43] Q. Wen and Q. Du, An approximate numerical method for solving Cauchy singular integral equations composed of multiple implicit parameter functions with unknown integral limits in contact mechanics, J. Math. Anal. Appl., 2020, 482, 123530. · Zbl 1437.74028
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.