×

Some classes of equations of discrete type with harmonic singular operator and convolution. (English) Zbl 1410.44003

Summary: In this paper, we study four classes of discrete type equations with harmonic singular operator and convolution. Such equations are turned into boundary value problems for analytic function with discontinuous coefficients by discrete Fourier transform. The general solutions and the conditions of solvability are obtained in class \(h\) by our method. Thus, this paper generalizes the theory of classical equations of convolution type.

MSC:

44A15 Special integral transforms (Legendre, Hilbert, etc.)
30E25 Boundary value problems in the complex plane
44A35 Convolution as an integral transform
44A55 Discrete operational calculus
Full Text: DOI

References:

[1] Lu, J. K., Boundary Value Problems for Analytic Functions (2004), World Scientific: World Scientific Singapore
[2] Noor, M. A.; Noor, K. I.; Mohyud-Din, S. T.; Shabbir, A., An iterative method with cubic convergence for nonlinear equations, applied mathematics and computation, Elsevier, 183, 1249-1255 (2006) · Zbl 1113.65052
[3] Noor, M. A.; Mohyud-Din, S. T., Variational iteration technique for solving higher order boundary value problems, applied mathematics and computation, Elsevier, 189, 1929-1942 (2007) · Zbl 1122.65374
[4] Muskhelishvilli, N. I., Singular Integral Equations (2002), NauKa: NauKa Moscow
[5] Du, J. Y.; Xu, N.; Zhang, Z. X., Boundary behavior of Cauchy-type integrals in Clifford analysis, Acta Math. Sci. Ser. B Engl. Ed., 29, 1, 210-224 (2009) · Zbl 1199.30267
[6] Blaya, R. A.; Reyes, J. B.; Brackx, F.; De Schepper, H.; Sommen, F., Boundary value problems for the quaternionic hermitian in r4 analysis, Boundary Value Problems, 74, 1 (2012) · Zbl 1276.30058
[7] Li, P. R., One class of generalized boundary value problem for analytic functions, Boundary Value Problems, 40, 1 (2015) · Zbl 1332.30061
[8] Li, P. R., On method of solution for two kinds of singular integral equations of convolution type with reflection, Ann. Differ. Equ., 29, 2, 159-166 (2013) · Zbl 1289.45001
[9] Krantz, S. G., Function Theory of Several Complex Variables (2001), AMS Chelsea Publishing: AMS Chelsea Publishing Providence, RI · Zbl 1087.32001
[10] Eelbode, D.; Sommen, F., The inverse radon transform and the fundamental solution of the hyperbolic dirac equation, Math. Z., 247, 733-745 (2004) · Zbl 1058.30044
[11] Mohyud-Din; Noor, S. T.; Noor, M. A.; Inayat, K., Some relatively new techniques for nonlinear problems, Math. Probl. Eng., 2009 (2009) · Zbl 1184.35280
[12] Mehdi, H. S.M.; Tauseef, M.-D. S.; Husain, G., Variational iteration method for Hirota-Satsuma coupled KdV equation using auxiliary parameter, Int. J. Numer. Methods Heat Fluid Flow, 22, 3, 277-286 (2012) · Zbl 1356.35202
[13] Mohyud-Din, S. T.; Negahdary, E.; Usman, M., A meshless numerical solution of the family of generalized fifth-order Korteweg-de Vries equations, Int. J. Numer. Methods Heat Fluid Flow, 22, 5, 641-658 (2012) · Zbl 1357.65264
[14] Huang, S.; Qiao, Y. Y.; Wen, G. C., Real and Complex Clifford Analysis (2005), Springer: Springer New York
[15] Baturev, A. A.; Kravchenko, V. G.; Litvinchuk, G. S., An approach to the approximate solution of singular integral equations with a noncarleman shift, Dokl. Math., 53, 2, 230-232 (1996) · Zbl 0887.45006
[16] Liu, L.; Ren, G. B., Normalized system for wave and Dunkl operators, Taiwan. J. Math., 14, 675-683 (2010) · Zbl 1218.35060
[17] Gong, Y. F.; Leong, L. T.; Qiao, T., Two integral operators in clifford analysis, J. Math. Anal. Appl., 354, 435-444 (2009) · Zbl 1182.30082
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.