×

How to find the Lax pair from the Yang-Baxter equation. (English) Zbl 0742.58057

The authors give a brief description of the Yang-Baxter equations which play an important role in the theory of classical and quantum integrable systems. For a more fruitful application of the theory to the quantum case, a procedure for constructing the quantum Lax pair from the Yang- Baxter equations is required. By using an infinitesimal version of the Yang-Baxter equations, the authors describe an explicit procedure for constructing a quantum Lax pair. They illustrate their results by applying their procedure to study in some detail the Heisenberg XYZ model.

MSC:

58J50 Spectral problems; spectral geometry; scattering theory on manifolds
34L25 Scattering theory, inverse scattering involving ordinary differential operators
17B81 Applications of Lie (super)algebras to physics, etc.
35P25 Scattering theory for PDEs
Full Text: DOI

References:

[1] Kulish, P. P., Sklyanin, E. K.: J. Sov. Math.19, 1596 (1982) · Zbl 0553.58039 · doi:10.1007/BF01091463
[2] Jimbo, M.: Introduction to the Yang-Baxter equation. In: Braid Group, Knot Theory and Statistical Mechanics. Yang, C. N., Ge, M. L. (eds.). Singapore: World Scientific 1989
[3] Semenov-Tyan-Shanskii, M. A.: What is a classicalR-matrix? Funct. Anal. Appl.17, 259 (1983); Drinfel’d, V. G.: Hamiltonian structures on Lie groups, Lie bi-algebras and the geometric meaning of the classical Yang-Baxter equations. Sov. Math. Dokl.27, 68 (1983); Reshetikhin, N. Yu., Faddeev, L. D.: Hamiltonian structures for integrable models of field theory. Theor. Math. Phys.56, 847 (1984) · Zbl 0535.58031 · doi:10.1007/BF01076717
[4] Belavin, A. A., Drinfel’d, V. G.: Solutions of the classical Yang-Baxter equation for simple Lie algebras. Funct. Anal. Appl.16, 159 (1982) · Zbl 0511.22011 · doi:10.1007/BF01081585
[5] Faddeev, L. D., Sklyanin, E. K., Takhtajan, L. A.: The quantum inverse problem I. Theor. Math. Phys.40, 194 (1979) · Zbl 0449.35096
[6] Faddeev, L. D.: Integrable models in (1+1)-dimensional quantum field theory. Les Houches SessionXXXIX, vol 563. Amsterdam: Elsevier 1982
[7] Lax, P. D.: Integrals of nonlinear equations of evolutions of evolution and solitary waves. Commun. Pure. Appl. Math.21, 467 (1968). For a more recent reference, see e.g. Kupershmidt, B. A., Wilson, G.: Modifying Lax equations and the second Hamiltonian structure. Invent. Math.62, 403 (1981) · Zbl 0162.41103 · doi:10.1002/cpa.3160210503
[8] Wadati, M., Akutsu, M.: From solitons to knots and links. Prog. Theor. Phys.94, 1 (1988) · Zbl 0651.57005 · doi:10.1143/PTPS.94.1
[9] Nijenhuis, A.: Indag, Math.13, 200 (1951)
[10] Magri, F.: A simple model of the integrable Hamiltonian equation. J. Math. Phys.19, 1156 (1978); Okubo, S., Das. A.: The integrabiliy condition for dynamical systems. Phys. Lett.B209, 311 (1988) · Zbl 0383.35065 · doi:10.1063/1.523777
[11] Moser, J.: Three integrable Hamiltonian systems connected with isospectral deformations. Adv. Math.16, 197 (1975) · Zbl 0303.34019 · doi:10.1016/0001-8708(75)90151-6
[12] Ganoulis, N.: Quantum Toda systems and Lax pairs. Commun. Math. Phys.109, 23 (1987) · Zbl 0635.58022 · doi:10.1007/BF01205671
[13] Sogo, K., Wadati, M.: Quantum inverse scattering method and Yang-Baxter relation for integrable spin systems. Prog. Theor. Phys.68, 85 (1982) · Zbl 1098.82549 · doi:10.1143/PTP.68.85
[14] Takhtadzhan, L. A., Faddeev, L. D.: The quantum method of the inverse problem and the Heisenberg XYZ model. Russ. Math. Surv.34, 11 (1979) · doi:10.1070/RM1979v034n05ABEH003909
[15] Izergin, A., Korepin, V. E.: Lattice versions of quantum field theory models in two dimensions. Nucl. Phys.B205, FS5, 401 (1982) · doi:10.1016/0550-3213(82)90365-0
[16] Thacker, H. B.: Exact integrability in quantum field theory and statistical mechanics. Rev. Mod. Phys.53, 253 (1981) · doi:10.1103/RevModPhys.53.253
[17] Bariev, R. Z.: Two-dimensional ice-type vertex model with two types of staggered sites. Theor. Math. Phys.49, 1021 (1981) · doi:10.1007/BF01028997
[18] Zamolodchikov, A. B., Zamolodchikov, Al. B.: FactorizedS-matrices in two dimensions as the exact solutions of certain relativistic quantum field theory models. Ann. Phys.120, 253 (1979) · Zbl 0946.81070 · doi:10.1016/0003-4916(79)90391-9
[19] Baxter, R. J.: Partition function of the eight-vertex lattice model. Ann. Phys.70, 193 (1972) · Zbl 0236.60070 · doi:10.1016/0003-4916(72)90335-1
[20] Baxter, R. J.: One-dimensional anisotropic Heisenberg chain. Ann. Phys.70, 323 (1972) · doi:10.1016/0003-4916(72)90270-9
[21] Zamolodchikov, A. B.:Z 4-symmetric factorizedS-matrix in two space-time dimensions. Commun. Math. Phys.69, 165 (1979) · doi:10.1007/BF01221446
[22] Jimbo, M.: QuantumR matrix for the generalized Toda system. Commun. Math. Phys.102, 537 (1986) · Zbl 0604.58013 · doi:10.1007/BF01221646
[23] Kulish, P. P., Sklyanin, E. K.: Quantum spectral transform method, Recent developments. In: Integrable quantum field theories. Lect. Notes in Phys. vol151. Berlin, Heidelberg, New York: Springer 1982 · Zbl 0734.35071
[24] Thacker, H. B.: Corner transfer matrices and Lorentz invariance on a lattice. PhysicaD18, 348 (1986) · Zbl 0596.58050
[25] Gradshteyn, I. S., Ryzhik, I. M.: Tables of integrals, series and products, p. 904. New York: Academic Press 1965 · Zbl 0918.65002
[26] McKean, H.: Integrable systems and algebraic curves. Lect. Notes in Math. vol755, p. 83. Berlin, Heidelberg, New York: Springer 1979 · Zbl 0449.35080
[27] Reshetikhin, N. Yu., Kulish, P. P.: The quantum linear problem for the Sine-Gordon equation and higher representations. Zapiski nauch. LOMI101, 101 (1980)
[28] Drinfel’d, V. G.: Hopf algebras and the quantum Yang-Baxter equation. Sov. Math. Dokl.32, 254 (1985)
[29] Jimbo, M.: Aq-difference analogue ofU q g and the Yang-Baxter equation. Lett. Math. Phys.10, 63 (1985) · Zbl 0587.17004 · doi:10.1007/BF00704588
[30] Drinfel’d, V. G.: Quantum groups. ICM Proceedings, Berkeley, p. 798 (1986)
[31] Faddeev, L. D., Reshetikhin, N. Yu., Takhtajan, L. A. Quantum groups. In: Braid Group, Knot Theory and Statistical Mechanics. Yang, C. N., Ge, M. L. (eds.) Singapore: World Scientific 1989
[32] Deift, P. A., Li, L. C.: Generalized affine Lie algebras and the solution of a class of flows associated with the QR eigenvalue algorithm. Preprint (1990); Deift, P. A., Li, L. C., Tomei, C.: Matrix factorization and integrable systems. Commun. Pure Appl. Math.XLII, 443 (1989) · Zbl 0820.58030
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.