×

Stability analysis for a fractional HIV infection model with nonlinear incidence. (English) Zbl 1418.92208

Summary: We introduce the fractional-order derivatives into an HIV infection model with nonlinear incidence and show that the established model in this paper possesses nonnegative solution, as desired in any population dynamics. We also deal with the stability of the infection-free equilibrium, the immune-absence equilibrium, and the immune-presence equilibrium. Numerical simulations are carried out to illustrate the results.

MSC:

92D30 Epidemiology
92C60 Medical epidemiology

Software:

DFOC; sysdfod

References:

[1] Atanackovic, T. M.; Stankovic, B., An expansion formula for fractional derivatives and its application, Fractional Calculus & Applied Analysis, 7, 3, 365-378 (2004) · Zbl 1128.26003
[2] Bognár, G., Similarity solution of boundary layer flows for non-Newtonian fluids, International Journal of Nonlinear Sciences and Numerical Simulation, 10, 11-12, 1555-1566 (2009) · Zbl 1188.68042
[3] Benmalek, M.; Charef, A., Digital fractional order operators for R-wave detection in electrocardiogram signal, IET Signal Processing, 3, 5, 381-391 (2009) · doi:10.1049/iet-spr.2008.0094
[4] Ferdi, Y., Some applications of fractional order calculus to design digital filters for biomedical signal processing, Journal of Mechanics in Medicine and Biology, 12, 2 (2012) · doi:10.1142/s0219519412400088
[5] Ferdi, Y.; Taleb-Ahmed, A.; Lakehal, M. R., Efficient generation of \(1 / f^\beta\) noise using signal modeling techniques, IEEE Transactions on Circuits and Systems. I. Regular Papers, 55, 6, 1704-1710 (2008) · doi:10.1109/tcsi.2008.918173
[6] Bagley, R. L.; Calico, R. A., Fractional order state equations for the control of viscoelastically damped structures, Journal of Guidance, Control, and Dynamics, 14, 2, 304-311 (1991) · doi:10.2514/3.20641
[7] Jia, G. L.; Ming, Y. X., Study on the viscoelasticity of cancellous bone based on higher-order fractional models, Proceedings of the 2nd International Conference on Bioinformatics and Biomedical Engineering (ICBBE ’08) · doi:10.1109/icbbe.2008.761
[8] He, J. H., Some applications of nonlinear fractional differential equations and their approximations, Bulletin of Science Technology & Society, 15, 86-90 (1999)
[9] Mandelbrot, B., Some noises with \(1 / f\) spectrum, a bridge between direct current and white noise, IEEE Transactions on Information Theory, 13, 2, 289-298 (1967) · Zbl 0148.40507 · doi:10.1109/tit.1967.1053992
[10] Magin, R. L., Fractional calculus in bioengineering, Critical Reviews in Biomedical Engineering, 32, 1-377 (2004) · doi:10.1615/critrevbiomedeng.v32.10
[11] Rossikhin, Y. A.; Shitikova, M. V., Applications of fractional calculus to dynamic problems of linear and nonlinear hereditary mechanics of solids, Applied Mechanics Reviews, 50, 1, 15-67 (1997) · doi:10.1115/1.3101682
[12] Mainardi, F., Fractional calculus: some basic problems in continuum and statistical mechanics, Fractals and Fractional Calculus in Continuum Mechanics, 378, 291-348 (1997), Berlin, Germany: Springer, Berlin, Germany · Zbl 0917.73004 · doi:10.1007/978-3-7091-2664-6_7
[13] Baillie, R. T., Long memory processes and fractional integration in econometrics, Journal of Econometrics, 73, 1, 5-59 (1996) · Zbl 0854.62099 · doi:10.1016/0304-4076(95)01732-1
[14] Cole, K. S., Electric conductance of biological systems, Proceedings of the Cold Spring Harbor Symposia on Quantitative Biology
[15] Djordjević, V. D.; Jarić, J.; Fabry, B.; Fredberg, J. J.; Stamenović, D., Fractional derivatives embody essential features of cell rheological behavior, Annals of Biomedical Engineering, 31, 6, 692-699 (2003) · doi:10.1114/1.1574026
[16] Culshaw, R. V.; Ruan, S., A delay-differential equation model of HIV infection of CD \(4^+\) T-cells, Mathematical Biosciences, 165, 1, 27-39 (2000) · Zbl 0981.92009 · doi:10.1016/s0025-5564(00)00006-7
[17] Huang, G.; Yokoi, H.; Takeuchi, Y.; Kajiwara, T.; Sasaki, T., Impact of intracellular delay, immune activation delay and nonlinear incidence on viral dynamics, Japan Journal of Industrial and Applied Mathematics, 28, 3, 383-411 (2011) · Zbl 1226.92049 · doi:10.1007/s13160-011-0045-x
[18] Huang, G.; Takeuchi, Y.; Korobeinikov, A., HIV evolution and progression of the infection to AIDS, Journal of Theoretical Biology, 307, 149-159 (2012) · Zbl 1337.92128 · doi:10.1016/j.jtbi.2012.05.013
[19] Perelson, A. S.; Kirschner, D. E.; de Boer, R., Dynamics of HIV infection of CD \(4^+\) T cells, Mathematical Biosciences, 114, 1, 81-125 (1993) · Zbl 0796.92016 · doi:10.1016/0025-5564(93)90043-a
[20] Perelson, A. S.; Nelson, P. W., Mathematical analysis of HIV-1 dynamics in vivo, SIAM Review, 41, 1, 3-44 (1999) · Zbl 1078.92502 · doi:10.1137/s0036144598335107
[21] Arafa, A. A. M.; Rida, S. Z.; Khalil, M., Fractional modeling dynamics of HIV and CD \(4^+\) T-cells during primary infection, Nonlinear Biomedical Physics, 6, article 1 (2012) · doi:10.1186/1753-4631-6-1
[22] Ding, Y.; Ye, H., A fractional-order differential equation model of HIV infection of CD \(4^+\) T-cells, Mathematical and Computer Modelling, 50, 3-4, 386-392 (2009) · Zbl 1185.34005 · doi:10.1016/j.mcm.2009.04.019
[23] Korobeinikov, A., Global properties of infectious disease models with nonlinear incidence, Bulletin of Mathematical Biology, 69, 6, 1871-1886 (2007) · Zbl 1298.92101 · doi:10.1007/s11538-007-9196-y
[24] Korobeinikov, A., Global asymptotic properties of virus dynamics models with dose dependent parasite reproduction and virulence, and nonlinear incidence rate, Mathematical Medicine and Biology, 26, 225-239 (2009) · Zbl 1171.92034
[25] Korobeinikov, A., Stability of ecosystem: global properties of a general predator-prey model, Mathematical Medicine and Biology, 26, 4, 309-321 (2009) · Zbl 1178.92053 · doi:10.1093/imammb/dqp009
[26] Petras, I., Fractional-Order Nonlinear Systems: Modeling, Analysis and Simulation (2011), New York, NY, USA: Springer, New York, NY, USA · Zbl 1228.34002
[27] Ahmed, E.; Elgazzar, A. S., On fractional order differential equations model for nonlocal epidemics, Physica A: Statistical Mechanics and Its Applications, 379, 2, 607-614 (2007) · doi:10.1016/j.physa.2007.01.010
[28] Odibat, Z. M.; Shawagfeh, N. T., Generalized Taylor’s formula, Applied Mathematics and Computation, 186, 1, 286-293 (2007) · Zbl 1122.26006 · doi:10.1016/j.amc.2006.07.102
[29] Lin, W., Global existence theory and chaos control of fractional differential equations, Journal of Mathematical Analysis and Applications, 332, 1, 709-726 (2007) · Zbl 1113.37016 · doi:10.1016/j.jmaa.2006.10.040
[30] Atanackovic, T. M.; Stankovic, B., On a numerical scheme for solving differential equations of fractional order, Mechanics Research Communications, 35, 7, 429-438 (2008) · Zbl 1258.65103 · doi:10.1016/j.mechrescom.2008.05.003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.