×

Ground state solutions for Kirchhoff-type problems with convolution nonlinearity and Berestycki-Lions type conditions. (English) Zbl 1481.35211

Summary: In this paper, we discuss the following Kirchhoff-type problem with convolution nonlinearity \[ -\left(1+ b\int_{\mathbb{R}^3}|\nabla u|^2 dx \right) \triangle u+ V(x)u=(I_{\alpha}*F(u))f(u),\;x\in \mathbb{R}^3,\;u\in H^1(\mathbb{R}^3), \] where \(b>0\), \(I_\alpha:\mathbb{R}^3\rightarrow \mathbb{R}\), with \(\alpha\in(0, 3)\), is the Riesz potential, \(V\) is differentiable, \(f\in\mathbb{C}(\mathbb{R}, \mathbb{R})\) and \(F(t)=\int^t_0f(s)ds\). Let \(f\) satisfies some relatively weak conditions in the absence of the usual Ambrosetti-Rabinowitz or monotonicity conditions. We get two classes of ground state solutions under the general “Berestycki-Lions conditions” on the nonlinearity \(f\) and we also give a minimax characterization of the ground state energy.

MSC:

35J62 Quasilinear elliptic equations
35A01 Existence problems for PDEs: global existence, local existence, non-existence
35J20 Variational methods for second-order elliptic equations
Full Text: DOI

References:

[1] Arosio, A.; Panizzi, S., On the well-posedness of Kirchhoff string, Trans. Am. Math. Soc., 348, 305-330 (1996) · Zbl 0858.35083 · doi:10.1090/S0002-9947-96-01532-2
[2] Azzollini, A., The elliptic Kirchhoff equation in \({\mathbb{R}}^N\) perturbed by a local nonlinearity, Differ. Integral Equ., 25, 543-554 (2012) · Zbl 1265.35069
[3] Berestycki, H.; Lions, P., Nonlinear scalar field equations, I. Existence of a ground state, Arch. Ration. Mech. Anal., 82, 313-345 (1983) · Zbl 0533.35029 · doi:10.1007/BF00250555
[4] Brézis, H.; Lieb, H., A relation between pointwise convergence of functions and convergence of functionals, Proc. Am. Math. Soc., 88, 486-490 (1983) · Zbl 0526.46037 · doi:10.1090/S0002-9939-1983-0699419-3
[5] Chen, S.; Tang, X., Existence and non-existence results for Kirchhoff-type problems with convolution nonlinearity, Adv. Nonlinear Anal., 9, 148-167 (2020) · Zbl 1421.35100 · doi:10.1515/anona-2018-0147
[6] Chen, S.; Tang, X., Berestycki-Lions conditions on ground state solutions for Kirchhoff-type problems with variable potentials, J. Math. Phys., 60, 121509 (2019) · Zbl 1432.35192 · doi:10.1063/1.5128177
[7] Chen, S., Tang, X.: Ground state solutions for general Choquard equations with a variable potential and a local nonlinearity. Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Mat. (2020). doi:10.1007/s13398-019-00775-5 · Zbl 1437.35209
[8] Chipot, M.; Lovat, B., Some remarks on nonlocal elliptic and parabolic problems, Nonlinear Anal., 30, 4619-4627 (1997) · Zbl 0894.35119 · doi:10.1016/S0362-546X(97)00169-7
[9] Ruiz, D., The Schrödinger-Poisson equation under the effect of a nonlinear local term, J. Funct. Anal., 237, 655-674 (2006) · Zbl 1136.35037 · doi:10.1016/j.jfa.2006.04.005
[10] Gu, G.; Tang, X., The concentration behavior of ground states for a class of Kirchhoff-type problems with Hartree-type nonlinearity, Adv. Nonlinear Stud., 19, 779-795 (2019) · Zbl 1427.35050 · doi:10.1515/ans-2019-2045
[11] Guo, Z., Ground states for Kirchhoff equations without compact condition, J. Differ. Equ., 259, 2884-2902 (2015) · Zbl 1319.35018 · doi:10.1016/j.jde.2015.04.005
[12] Hu, D.; Tang, X.; Zhang, Q., Existence of ground state solutions for Kirchhoff-type problem with variable potential, Appl. Anal. (2021) · Zbl 1514.35202 · doi:10.1080/00036811.2021.1947499
[13] He, X.; Zou, W., Existence and concentration behavior of positive solutions for a Kirchhoff equation in \({\mathbb{R}}^3 \), J. Differ. Equ., 252, 1813-1834 (2012) · Zbl 1235.35093 · doi:10.1016/j.jde.2011.08.035
[14] Jeanjean, L., Toland, J.: Bounded Palais-Smale mountain-pass sequences. C. R. Acad. Sci. Paris Sér. I Math. 327, 23-28 (1998) · Zbl 0996.47052
[15] Jeanjean, L., On the existence of bounded Palais-Smale sequences and application to a Landesman-Lazer-type problem set on \({\mathbb{R}}^N \), Proc. R. Soc. Edinb. Sect. A, 129, 787-809 (1999) · Zbl 0935.35044 · doi:10.1017/S0308210500013147
[16] Kirchhoff, G., Mechanik (1883), Leipzig: Teubner, Leipzig · JFM 08.0542.01
[17] Li, G.; Ye, H., Existence of positive ground state solutions for the nonlinear Kirchhoff type equations in \({\mathbb{R}}^3 \), J. Differ. Equ., 257, 566-600 (2014) · Zbl 1290.35051 · doi:10.1016/j.jde.2014.04.011
[18] Lü, D., Existence and concentration of ground state solutions for singularly perturbed nonlocal elliptic problems, Monatsh Math., 182, 335-358 (2017) · Zbl 1369.35023 · doi:10.1007/s00605-016-0889-x
[19] Lü, D., A note on Kirchhoff-type equations with Hartree-type nonlinearities, Nonlinear Anal., 99, 35-48 (2014) · Zbl 1286.35108 · doi:10.1016/j.na.2013.12.022
[20] Li, Y.; Li, X.; Ma, S., Groundstates for Kirchhoff-type equations with Hartree-type nonlinearities, Results Math. (2019) · Zbl 1412.35124 · doi:10.1007/s00025-018-0943-1
[21] Luo, H., Ground state solutions of Pohožaev type and Nehari type for a class of nonlinear Choquard equations, J. Math. Anal. Appl., 467, 842-862 (2018) · Zbl 1398.35071 · doi:10.1016/j.jmaa.2018.07.055
[22] Lions, P.: The concentration-compactness principle in the calculus of variation. The locally compact case. Part II. Ann Inst H Poincaré Anal Non Linéaire. 1, 223-283 (1984) · Zbl 0704.49004
[23] Lions, P.: The concentration-compactness principle in the calculus of variation. The locally compact case. Part I. Ann Inst H Poincaré Anal Non Linéaire. 1, 109-145 (1984) · Zbl 0541.49009
[24] Moroz, V.; Van, S., Existence of groundstate for a class of nonlinear Choquard equations, Trans. Am. Math. Soc., 367, 6557-6579 (2015) · Zbl 1325.35052 · doi:10.1090/S0002-9947-2014-06289-2
[25] Moroz, V.; Van, J., Groundstates of nonlinear Choquard equations: existence, qualitative properties and decay asymptotics, J. Funct. Anal., 265, 153-184 (2013) · Zbl 1285.35048 · doi:10.1016/j.jfa.2013.04.007
[26] Sun, J., Wu. T.: Ground state solutions for an indefinite Kirchhoff type problem with steep potential well. J. Differ. Equ. 256, 1771-1792 (2014) · Zbl 1288.35219
[27] Tang, X.; Chen, S., Ground STSTE solutions of Nehari-Pohozaev type for Kirchhoff-type problems with general potentials, Calc. Var. Partial Diffe. Equ., 56, 110-134 (2017) · Zbl 1376.35056 · doi:10.1007/s00526-017-1214-9
[28] Tang, X., Chen, S.: Singularly perturbed Choquard equations with nonlinearity satisfying Berestycki-Lions assumptions (2019). arXiv:1903.10347 · Zbl 1421.35068
[29] Van, J.; Xia, J., Groundstates for a local nonlinear perturbation of the Choquard equations with lower critical exponent, J. Math. Anal. Appl., 464, 1184-1202 (2018) · Zbl 1398.35094 · doi:10.1016/j.jmaa.2018.04.047
[30] Willem, M., Minimax Theorems, Progress in Nonlinear Differential Equations and Their Applications (1996), Boston: Birkhäuser Boston Inc., Boston · Zbl 0856.49001
[31] Xia, J., Zhang, X.: Saddle solutions for the critical Choquard equation. Calc. Var. Partial Differ. Equ. (2021). doi:10.1007/s00526-021-01919-5 · Zbl 1459.35216
[32] Zhang, Q., Hu, D.: Existence of solutions for a class of quasilinear Schrödinger equation with a Kirchhoff-type. Complex Var. Elliptic Equ. (2021). doi:10.1080/17476933.2021.1916918 · Zbl 1497.35244
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.