×

Asymptotic behavior of a quasilinear Keller-Segel system with signal-suppressed motility. (English) Zbl 1471.35050

Summary: This paper is concerned with the density-suppressed motility model: \[ u_t=\Delta \left( \displaystyle \frac{u^m}{v^{\alpha}}\right) +\beta uf(w),\quad v_t=D\Delta v-v+u,\quad w_t=\Delta w-uf(w) \] in a smoothly bounded convex domain \(\Omega \subset\mathbb{R}^2\), where \(m>1\), \(\alpha>0\), \(\beta >0\) and \(D>0\) are parameters, the response function \(f\) satisfies \(f\in C^1([0,\infty)), f(0)=0, f(w)>0\) in \((0,\infty)\). This system describes the density-suppressed motility of Eeshcrichia coli cells in the process of spatio-temporal pattern formation via so-called self-trapping mechanisms. Based on the duality argument, it is shown that for suitable large \(D\) the problem admits at least one global weak solution \((u, v, w)\) which will asymptotically converge to the spatially uniform equilibrium \((\overline{u_0}+\beta \overline{w_0},\overline{u_0}+\beta \overline{w_0},0)\) with \(\overline{u_0}=\frac{1}{|\Omega |}\int_{\Omega}u(x,0)dx\) and \(\overline{w_0}=\frac{1}{|\Omega |}\int_{\Omega}w(x,0)dx\) in \(L^\infty (\Omega )\).

MSC:

35B40 Asymptotic behavior of solutions to PDEs
35B36 Pattern formations in context of PDEs
35K51 Initial-boundary value problems for second-order parabolic systems
35K59 Quasilinear parabolic equations
92C17 Cell movement (chemotaxis, etc.)

References:

[1] Ahn, J.; Yoon, C., Global well-posedness and stability of constant equilibria in parabolic-elliptic chemotaxis system with gradient sensing, Nonlinearity, 32, 1327-1351 (2019) · Zbl 1409.35104 · doi:10.1088/1361-6544/aaf513
[2] Bellomo, N.; Bellouquid, A.; Chouhad, N., From a multiscale derivation of nonlinear cross-diffusion models to Keller-Segel models in a Navier-Stokes fluid, Math. Models Methods Appl. Sci., 26, 2041-2069 (2016) · Zbl 1353.35038 · doi:10.1142/S0218202516400078
[3] Calvez, V.; Carrillo, JA, Volume effects in the Keller-Segel model: energy estimates preventing blow-up, J. Math. Pures Appl., 86, 9, 155-175 (2006) · Zbl 1116.35057 · doi:10.1016/j.matpur.2006.04.002
[4] Cañizo, JA; Desvillettes, L.; Fellner, K., Improved duality estimates and applications to reaction-diffusion equations, Commun. PDE., 39, 1185-1284 (2014) · Zbl 1295.35142 · doi:10.1080/03605302.2013.829500
[5] Fu, X.; Tang, L.; Liu, C.; Huang, J.; Hwa, T.; Lenz, P., Stripe formation in bacterial system with density-suppressed motility, Phys. Rev. Lett., 108, 198102 (2012) · doi:10.1103/PhysRevLett.108.198102
[6] Fujie, K.: Study of reaction-diffusion systems modeling chemotaxis, Doctoral thesis (2016)
[7] Fujie, K.; Jiang, J., Global existence for a kinetic model of pattern formation with density-suppressed motilities, J. Differ. Equ., 269, 5338-5378 (2020) · Zbl 1440.35330 · doi:10.1016/j.jde.2020.04.001
[8] Fujie, K.; Jiang, J., Comparison methods for a Keller-Segel-type model of pattern formations with density-suppressed motilities, Calc. Var. Partial Differ. Equ., 60, 1-37 (2021) · Zbl 1467.35044 · doi:10.1007/s00526-021-01943-5
[9] Herrero, MA; Velázquez, JJL, Singularity patterns in a chemotaxis model, Math. Ann., 306, 583-623 (1996) · Zbl 0864.35008 · doi:10.1007/BF01445268
[10] Herrero, MA; Velázquez, JJL, A blow-up mechanism for a chemotaxis model, Ann. Scu. Norm. Super. Pisa Cl. Sci., 24, 663-683 (1997) · Zbl 0904.35037
[11] Hillen, T.; Painter, KJ; Winkler, M., Convergence of a cancer invasion model to a logistic chemotaxis model, Math. Models Methods Appl. Sci., 23, 165-198 (2013) · Zbl 1263.35204 · doi:10.1142/S0218202512500480
[12] Ishida, S.; Seki, K.; Yokota, T., Boundedness in quasilinear Keller-Segel systems of parabolic-parabolic type on non-convex bounded domains, J. Differ. Equ., 256, 2993-3010 (2014) · Zbl 1295.35252 · doi:10.1016/j.jde.2014.01.028
[13] Isenbach, M., Chemotaxis (2004), London: Imperial College Pres, London · doi:10.1142/p303
[14] Jiang, J., Laurenot, P.: Global existence and uniform boundedness in a chemotaxis model with signal-dependent motility, preprint arXiv:2101.10666
[15] Jin, H.; Kim, YJ; Wang, Z., Boundedness, stabilization and pattern formation driven by density-suppressed motility, SIAM J. Appl. Math., 78, 3, 1632-1657 (2018) · Zbl 1393.35100 · doi:10.1137/17M1144647
[16] Jin, H.; Shi, S.; Wang, Z., Boundedness and asymptotics of a reaction-diffusion system with density-dependent motility, J. Differ. Equ., 269, 6758-6793 (2020) · Zbl 1441.35142 · doi:10.1016/j.jde.2020.05.018
[17] Keller, E.; Segel, L., Initiation of slime mold aggregation viewed as an instability, J. Theor. Biol., 26, 399-415 (1970) · Zbl 1170.92306 · doi:10.1016/0022-5193(70)90092-5
[18] Keller, EF; Segel, LA, Model for chemotaxis, J. Theor. Biol., 30, 225-234 (1971) · Zbl 1170.92307 · doi:10.1016/0022-5193(71)90050-6
[19] Ladyzenskaja, OA; Solonnikov, VA; Uralceva, NN, Linear and Qquasi-linear Equations of Parabolic Type, Transl. Math. Monogr. (1968), Providence: American Mathematical Society, Providence · Zbl 0174.15403 · doi:10.1090/mmono/023
[20] Liu, C., Sequential establishment of stripe patterns in an expanding cell population, Science, 334, 238-241 (2011) · doi:10.1126/science.1209042
[21] Lv, WB; Wang, Q., Global existence for a class of chemotaxis systems with signal-dependent motility, indirect signal production and generalized logistic source, Z. Angew. Math. Phys., 71, 2, 53 (2020) · Zbl 1439.35227 · doi:10.1007/s00033-020-1276-y
[22] Lv, WB; Wang, Q., A n-dimensional chemotaxis system with signal-dependent motility and generalized logistic source: global existence and asymptotic stabilization, Proc. R. Soc. Edinb. A (2020) · Zbl 1433.35427 · doi:10.1017/prm.2020.38
[23] Lv, W.B., Wang, Z.A.: Global classical solutions for a class of reaction-diffusion system with density-suppressed motility. arXiv:2102.08042
[24] Ma, M.; Peng, R.; Wang, Z., Stationary and non-stationary patterns of the density-suppressed motility model, Phys. D, 402, 132559 (2020) · Zbl 1453.37086 · doi:10.1016/j.physd.2019.132259
[25] Murray, JD, Mathematical Biology (2001), New York: Springer, New York · Zbl 0704.92001
[26] Porzio, MM; Vespri, V., Hölder estimates for local solutions of some doubly nonlinear degenerate parabolic equations, J. Differ. Equ., 103, 1, 146-178 (1993) · Zbl 0796.35089 · doi:10.1006/jdeq.1993.1045
[27] Rothe, F., Global Solutions of Reaction-Diffusion Systems (1984), Berlin: Springer, Berlin · Zbl 0546.35003 · doi:10.1007/BFb0099278
[28] Stinner, C.; Surulescu, C.; Winkler, M., Global weak solutions in a PDE-ODE system modelling multiscale cancer cell invasion, SIAM J. Math. Anal., 46, 3, 1969-2007 (2014) · Zbl 1301.35189 · doi:10.1137/13094058X
[29] Tao, Y.; Winkler, M., Effects of signal-dependent motilities in a Keller-Segel-type reaction-diffusion system, Math. Model Meth. Appl. Sci., 27, 1645-1683 (2017) · Zbl 1516.35092 · doi:10.1142/S0218202517500282
[30] Tao, Y.; Winkler, M., Boundedness in a quasilinear parabolic-parabolic Keller-Segel system with subcritical sensitivity, J. Differ. Equ., 252, 692-715 (2012) · Zbl 1382.35127 · doi:10.1016/j.jde.2011.08.019
[31] Vázquez, JL, The Porous Medium Equations. Oxford Mathematical Monographs (2007), Oxford: Oxford University Press, Oxford · Zbl 1107.35003
[32] Wang, J.; Wang, M., Boundedness in the higher-dimensional Keller-Segel model with signal-dependent motility and logistic growth, J. Math. Phys., 60, 011507 (2019) · Zbl 1406.35154 · doi:10.1063/1.5061738
[33] Winkler, M., Global existence and slow grow-up in a quasilinear Keller-Segel system with exponentially decaying diffusivity, Nonlinearity, 30, 735-764 (2017) · Zbl 1382.35048 · doi:10.1088/1361-6544/aa565b
[34] Winkler, M., Global classical solvability and generic infinite-time blow-up in quasilinear Keller-Segel systems with bounded sensitivities, J. Differ. Equ., 266, 8034-8066 (2019) · Zbl 1415.35052 · doi:10.1016/j.jde.2018.12.019
[35] Winkler, M., Finite-time blow-up in the higher-dimensional parabolic-parabolic Keller-Segel system, J. Math. Pures Appl., 100, 748-767 (2013) · Zbl 1326.35053 · doi:10.1016/j.matpur.2013.01.020
[36] Winkler, M., Aggregation vs. global diffusive behavior in the higher-dimensional Keller-Segel model, J. Differ. Equ., 248, 12, 2889-2905 (2010) · Zbl 1190.92004 · doi:10.1016/j.jde.2010.02.008
[37] Winkler, M., Boundedness and large time behavior in a three-dimensional chemotaxis-Stokes system with nonlinear diffusion and general sensitivity, Calc. Var. Partial Diff. Equ., 54, 3789-3828 (2015) · Zbl 1333.35104 · doi:10.1007/s00526-015-0922-2
[38] Winkler, M., Can simultaneous density-determined enhancement of diffusion and cross-diffusion foster boundedness in Keller-Segel type systems involving signal-dependent motilities?, Nonlinearity, 33, 12, 6590-6632 (2020) · Zbl 1454.35224 · doi:10.1088/1361-6544/ab9bae
[39] Yoon, C.; Kim, YJ, Global existence and aggregation in a Keller-Segel model with Fokker-Planck diffusion, Acta Appl. Math., 149, 101-123 (2017) · Zbl 1398.35110 · doi:10.1007/s10440-016-0089-7
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.