×

Buckling analysis of functionally graded nanobeams under non-uniform temperature using stress-driven nonlocal elasticity. (English) Zbl 1496.74060


MSC:

74G60 Bifurcation and buckling
74K10 Rods (beams, columns, shafts, arches, rings, etc.)
74F05 Thermal effects in solid mechanics
74E05 Inhomogeneity in solid mechanics
Full Text: DOI

References:

[1] Autumn, K.; Liang, Y. A.; Hsieh, S. T.; Zesch, W.; Chan, W. P.; Kenny, T. W.; Fearing, R.; Full, R. J., Adhesive force of a single gecko foot-hair, Nature, 405, 681-685 (2000)
[2] Kopperger, E.; List, J.; Madhira, S.; Rothfischer, F.; Lamb, D. C.; Simmel, F. C., A self-assembled nanoscale robotic arm controlled by electric fields, Science, 359, 296-300 (2018)
[3] Wang, Z. L.; Song, J. H., Piezoelectric nanogenerators based on zinc oxide nanowire arrays, Science, 312, 242-246 (2006)
[4] Xiang, R.; Inoue, T.; Zheng, Y. J.; Kumamoto, A.; Qian, Y.; Sato, Y.; Liu, M.; Tang, D. M.; Gokhale, D.; Guo, J.; Hisama, K.; Yotsumoto, S.; Ogamoto, T.; Arai, H.; Kobayashi, Y.; Zhang, H.; Hou, B.; Anisimov, A.; Maruyama, M.; Miyata, Y.; Okada, S.; Chiashi, S.; Li, Y.; Kong, J.; Kauppinen, E. I.; Ikuhara, Y.; Suenaga, K.; Maruyama, S., One-dimensional van der Waals heterostructures, Science, 367, 537-542 (2020)
[5] Peisker, H.; Michels, J.; Gorb, S. N., Evidence for a material gradient in the adhesive tarsal setae of the ladybird beetle Coccinella septempunctata, Nature Communications, 4, 1661 (2013)
[6] Alibardi, L., Review: mapping proteins localized in adhesive setae of the tokay gecko and their possible influence on the mechanism of adhesion, Protoplasma, 255, 1785-1797 (2018)
[7] Nix, W. D.; Gao, H. J., Indentation size effects in crystalline materials: a law for strain gradient plasticity, Journal of the Mechanics and Physics of Solids, 46, 411-425 (1998) · Zbl 0977.74557
[8] Huang, Y.; Zhang, F.; Hwang, K. C.; Nix, W. D.; Pharr, G. M.; Feng, G., A model of size effects in nano-indentation, Journal of the Mechanics and Physics of Solids, 54, 1668-1686 (2006) · Zbl 1120.74658
[9] Zhu, X. W.; Li, L., Closed form solution for a nonlocal strain gradient rod in tension, International Journal of Engineering Science, 119, 16-28 (2017) · Zbl 1423.74334
[10] Guo, S.; He, Y. M.; Lei, J.; Li, Z. K.; Liu, D. B., Individual strain gradient effect on torsional strength of electropolished microscale copper wires, Scripta Materialia, 130, 124-127 (2017)
[11] Greer, J. R.; Oliver, W. C.; Nix, W. D., Size dependence of mechanical properties of gold at the micron scale in the absence of strain gradients, Acta Materialia, 53, 1821-1830 (2005)
[12] Lu, L.; Guo, X. M.; Zhao, J. Z., Size-dependent vibration analysis of nanobeams based on the nonlocal strain gradient theory, International Journal of Engineering Science, 116, 12-24 (2017) · Zbl 1423.74499
[13] Eringen, A. C., Theory of nonlocal elasticity and some applications, Res Mechanica, 21, 313-342 (1987)
[14] Eringen, A. C., On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves, Journal of Applied Physics, 54, 4703-4710 (1983)
[15] Eringen, A. C., Nonlocal polar elastic continua, International Journal of Engineering Science, 10, 1-16 (1972) · Zbl 0229.73006
[16] Ghannadpour, S. A M.; Mohammadi, B.; Fazilati, J., Bending, buckling and vibration problems of nonlocal Euler beams using Ritz method, Composite Structures, 96, 584-589 (2013)
[17] Khodabakhshi, P.; Reddy, J. N., A unified integro-differential nonlocal model, International Journal of Engineering Science, 95, 60-75 (2015) · Zbl 1423.74133
[18] Sobhy, M.; Zenkour, A. M., Magnetic field effect on thermomechanical buckling and vibration of viscoelastic sandwich nanobeams with CNT reinforced face sheets on a viscoelastic substrate, Composites Part B: Engineering, 154, 492-506 (2018)
[19] Lu, L.; Guo, X. M.; Zhao, J. Z., A unified nonlocal strain gradient model for nanobeams and the importance of higher order terms, International Journal of Engineering Science, 119, 265-277 (2017)
[20] Mirjavadi, S. S.; Rabby, S.; Shafiei, N.; Afshari, B. M.; Kazemi, M., On size-dependent free vibration and thermal buckling of axially functionally graded nanobeams in thermal environment, Applied Physics A-Materials Science Processing, 123, 315 (2017)
[21] Barati, M. R.; Zenkour, A. M., Investigating post-buckling of geometrically imperfect metal foam nanobeams with symmetric and asymmetric porosity distributions, Composite Structures, 182, 91-98 (2017)
[22] Al-Shujairi, M.; Mollamahmutoglu, C., Buckling and free vibration analysis of functionally graded sandwich micro-beams resting on elastic foundation by using nonlocal strain gradient theory in conjunction with higher order shear theories under thermal effect, Composites Part B: Engineering, 154, 292-312 (2018)
[23] Wang, Y. B.; Zhu, X. W.; Dai, H. H., Exact solutions for the static bending of Euler-Bernoulli beams using Eringen’s two-phase local/nonlocal model, AIP Advances, 6, 22 (2016)
[24] Zhang, P.; Qing, H.; Gao, C. F., Theoretical analysis for static bending of circular Euler-Bernoulli beam using local and Eringen’s nonlocal integral mixed model, ZAMM-Zeitschrift für Angewandte Mathematik und Mechanik, 99, 8 (2019) · Zbl 07785951
[25] Zhang, P.; Qing, H.; Gao, C. F., Analytical solutions of static bending of curved Timoshenko microbeams using Eringen’s two-phase local/nonlocal integral model, ZAMM-Zeitschrift für Angewandte Mathematik und Mechanik, 100, 7 (2020) · Zbl 07809732
[26] Romano, G.; Barretta, R.; Diaco, M.; De Sciarra, F. M., Constitutive boundary conditions and paradoxes in nonlocal elastic nanobeams, International Journal of Mechanical Sciences, 121, 151-156 (2017)
[27] Fernandez-Saez, J.; Zaera, R.; Loya, J. A.; Reddy, J. N., Bending of Euler-Bernoulli beams using Eringen’s integral formulation: a paradox resolved, International Journal of Engineering Science, 99, 107-116 (2016) · Zbl 1423.74477
[28] Jiang, P.; Qing, H.; Gao, C. F., Theoretical analysis on elastic buckling of nanobeams based on stress-driven nonlocal integral model, Applied Mathematics and Mechanics (English Edition), 41, 2, 207-232 (2020) · Zbl 1462.74100
[29] Romano, G.; Barretta, R., Nonlocal elasticity in nanobeams: the stress-driven integral model, International Journal of Engineering Science, 115, 14-27 (2017) · Zbl 1423.74512
[30] Barretta, R.; Fabbrocino, F.; Luciano, R.; De Sciarra, F. M.; Ruta, G., Buckling loads of nano-beams in stress-driven nonlocal elasticity, Mechanics of Advanced Materials and Structures, 27, 869-875 (2020)
[31] Barretta, R.; Faghidian, S. A.; Luciano, R., Longitudinal vibrations of nano-rods by stress-driven integral elasticity, Mechanics of Advanced Materials and Structures, 26, 1307-1315 (2019)
[32] Barretta, R.; Faghidian, S. A.; De Sciarra, F. M., Stress-driven nonlocal integral elasticity for axisymmetric nano-plates, International Journal of Engineering Science, 136, 38-52 (2019) · Zbl 1425.74055
[33] Sedighi, H. M.; Malikan, M., Stress-driven nonlocal elasticity for nonlinear vibration characteristics of carbon/boron-nitride hetero-nanotube subject to magneto-thermal environment, Physica Scripta, 95, 055218 (2020)
[34] Zhang, P.; Qing, H.; Gao, C. F., Exact solutions for bending of Timoshenko curved nanobeams made of functionally graded materials based on stress-driven nonlocal integral model, Composite Structures, 245, 112362 (2020)
[35] Darban, H.; Fabbrocino, F.; Feo, L.; Luciano, R., Size-dependent buckling analysis of nanobeams resting on two-parameter elastic foundation through stress-driven nonlocal elasticity model, Mechanics of Advanced Materials and Structures, 28, 2408-2416 (2020)
[36] Bian, P. L.; Qing, H., Torsional static and vibration analysis of functionally graded nanotube with bi-Helmholtz kernel based stress-driven nonlocal integral model, Applied Mathematics and Mechanics (English Edition), 42, 3, 425-440 (2021) · Zbl 1486.74058
[37] Ma, Y. B., Size-dependent thermal conductivity in nanosystems based on non-Fourier heat transfer, Applied Physics Letters, 101, 211905 (2012)
[38] Dong, Y.; Cao, B. Y.; Guo, Z. Y., Size dependent thermal conductivity of Si nanosystems based on phonon gas dynamics, Physica E: Low-dimensional Systems and Nanostructures, 56, 256-262 (2014)
[39] Yu, Y. J.; Li, C. L.; Xue, Z. N.; Tian, X. G., The dilemma of hyperbolic heat conduction and its settlement by incorporating spatially nonlocal effect at nanoscale, Physics Letters A, 380, 255-261 (2016)
[40] Yu, Y. J.; Tian, X. G.; Liu, X. R., Size-dependent generalized thermoelasticity using Eringen’s nonlocal model, European Journal of Mechanics-A/Solids, 51, 96-106 (2015) · Zbl 1406.74186
[41] Yu, Y. J.; Xue, Z. N.; Li, C. L.; Tian, X. G., Buckling of nanobeams under nonuniform temperature based on nonlocal thermoelasticity, Composite Structures, 146, 108-113 (2016)
[42] Lei, J.; He, Y. M.; Li, Z. K.; Guo, S.; Liu, D. B., Effect of nonlocal thermoelasticity on buckling of axially functionally graded nanobeams, Journal of Thermal Stresses, 42, 526-539 (2019)
[43] Barati, M. R.; Zenkour, A., Forced vibration of sinusoidal FG nanobeams resting on hybrid Kerr foundation in hygro-thermal environments, Mechanics of Advanced Materials and Structures, 25, 669-680 (2018)
[44] Lei, J.; He, Y. M.; Guo, S.; Li, Z. K.; Liu, D. B., Thermal buckling and vibration of functionally graded sinusoidal microbeams incorporating nonlinear temperature distribution using DQM, Journal of Thermal Stresses, 40, 665-689 (2017)
[45] Sarkar, N., Thermoelastic responses of a finite rod due to nonlocal heat conduction, Acta Mechanica, 231, 947-955 (2020) · Zbl 1434.74043
[46] Singh, P.; Yadava, R. D S., Effect of surface stress on resonance frequency of microcantilever sensors, IEEE Sensors Journal, 18, 7529-7536 (2018)
[47] Wu, J. Z.; Zhang, N. H., Clamped-end effect on static detection signals of DNA-microcantilever, Applied Mathematics and Mechanics (English Edition), 42, 10, 1423-1438 (2021) · Zbl 1492.74016
[48] Wu, J. K., About beam, Mechanics in Engineering, 30, 106-109 (2008)
[49] Xi, Y. Y.; Lyu, Q.; Zhang, N. H.; Wu, J. Z., Thermal-induced snap-through buckling of simply-supported functionally graded beams, Applied Mathematics and Mechanics (English Edition), 41, 12, 1821-1832 (2020) · Zbl 1479.74039
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.