×

Structure-preserving algorithm and its error estimate for the relativistic charged-particle dynamics under the strong magnetic field. (English) Zbl 07909818

Summary: This paper investigates the numerical algorithm and its error estimates for the dynamics of relativistic charged particles under a strong maximal ordering scaling magnetic field. To maintain the fundamental principles of relativistic dynamics, including energy conservation, volume preservation, and the Lorentz invariant property, we construct a structure-preserving algorithm using the splitting scheme. This algorithm ensures the preservation of volume, energy, and the Lorentz invariant property (VELPA) exactly. Specifically, we establish an uniform and optimal error bound in both 4-position and 4-velocity for VELPA. Numerical experiments are also presented to demonstrate the advantages of VELPA in both uniform error estimate and conservation of energy, compared to the implicit Euler method and traditional energy-preserving AVF method.

MSC:

65L05 Numerical methods for initial value problems involving ordinary differential equations
78A35 Motion of charged particles

Software:

GEMPIC
Full Text: DOI

References:

[1] Dirac, PA, Forms of relativistic dynamics, Rev. Mod. Phys., 21, 392, 1949 · Zbl 0035.26803 · doi:10.1103/RevModPhys.21.392
[2] Rohrlich, F., Dynamics of a charged particle, Phys. Rev. E, 77, 2008 · doi:10.1103/PhysRevE.77.046609
[3] Eriksson, LG; Helander, P., Simulation of runaway electrons during tokamak disruptions, Comput. Phys. Commun., 154, 175-196, 2003 · doi:10.1016/S0010-4655(03)00293-5
[4] Guan, X.; Qin, H.; Fisch, NJ, Phase-space dynamics of runaway electrons in tokamaks, Phys. Plasmas, 17, 2010 · doi:10.1063/1.3476268
[5] Vay, L., Simulation of beams or plasmas crossing at relativistic velocity, J. Phys. Plasmas, 15, 2008 · doi:10.1063/1.2837054
[6] Possanner, S., Gyrokinetics from variational averaging: existence and error bounds, J. Math. Phys., 59, 2018 · Zbl 1395.78024 · doi:10.1063/1.5018354
[7] Feng, K.; Qin, M., Symplectic Geometric Algorithms for Hamiltonian Systems, 2010, Berlin: Springer, Berlin · Zbl 1207.65149 · doi:10.1007/978-3-642-01777-3
[8] Haier, E.; Lubich, C.; Wanner, G., Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations, 2006, Berlin: Springer, Berlin · Zbl 1094.65125
[9] Feng, K.; Shang, Z., Volume-preserving algorithms for source-free dynamical systems, Numer. Math., 71, 451-463, 1995 · Zbl 0839.65075 · doi:10.1007/s002110050153
[10] Wang, Y.; Liu, J.; Qin, H., Lorentz covariant canonical symplectic algorithms for dynamics of charged particles, Phys. Plasmas, 23, 2016 · doi:10.1063/1.4972824
[11] Wang, Y.; Liu, J.; He, Y., High order explicit Lorentz invariant volume-preserving algorithms for relativistic dynamics of charged particles, J. Comput. Phys., 439, 2021 · Zbl 07512326 · doi:10.1016/j.jcp.2021.110383
[12] Qin, H.; Guan, X., Variational symplectic integrator for long-time simulations of the guiding-center motion of charged particles in general magnetic fields, Phys. Rev. Lett., 100, 2008 · doi:10.1103/PhysRevLett.100.035006
[13] Qin, H.; Zhang, S.; Xiao, J.; Liu, J.; Sun, Y.; Tang, WM, Why is Boris algorithm so good?, Phys. Plasmas, 20, 2013 · doi:10.1063/1.4818428
[14] He, Y.; Sun, Y.; Liu, J.; Qin, H., Volume-preserving algorithms for charged particle dynamics, J. Comput. Phys., 281, 135-147, 2015 · Zbl 1351.82076 · doi:10.1016/j.jcp.2014.10.032
[15] Zhang, R.; Liu, J.; Qin, H.; Wang, Y.; He, Y.; Sun, Y., Volume-preserving algorithm for secular relativistic dynamics of charged particles, Phys. Plasmas, 22, 2015 · doi:10.1063/1.4916570
[16] Tao, M., Explicit high-order symplectic integrators for charged particles in general electromagnetic fields, J. Comput. Phys., 327, 245-251, 2016 · Zbl 1373.78048 · doi:10.1016/j.jcp.2016.09.047
[17] Kraus, M.; Kormann, K.; Morrison, PJ; Sonnendrücker, E., GEMPIC: geometric electromagnetic particle-in-cell methods, J. Plasma Phys., 83, 905830401, 2017 · doi:10.1017/S002237781700040X
[18] Zhang, R.; Wang, Y.; He, Y.; Xiao, J.; Liu, J.; Qin, H.; Tang, Y., Explicit symplectic algorithms based on generating functions for relativistic charged particle dynamics in time-dependent electromagnetic field, Phys. Plasmas, 25, 2018 · doi:10.1063/1.5012767
[19] Xiao, J.; Qin, H., Explicit high-order gauge-independent symplectic algorithms for relativistic charged particle dynamics, Comput. Phys. Commun., 241, 19, 2019 · Zbl 07674778 · doi:10.1016/j.cpc.2019.04.003
[20] Li, T.; Wang, B., Efficient energy-preserving methods for charged-particle dynamics, Appl. Math. Comput., 361, 703-714, 2019 · Zbl 1429.65298
[21] Ricketson, LF; Chacón, L., An energy-conserving and asymptotic-preserving charged-particle orbit implicit time integrator for arbitrary electromagnetic fields, J. Comput. Phys., 418, 2020 · Zbl 07506189 · doi:10.1016/j.jcp.2020.109639
[22] Brugnano, L.; Iavernaro, F.; Zhang, R., Arbitrarily high-order energy-preserving methods for simulating the gyrocenter dynamics of charged particles, J. Comput. Appl. Math., 380, 2020 · Zbl 1477.65265 · doi:10.1016/j.cam.2020.112994
[23] Hairer, E.; Lubich, C., Symmetric multistep methods for charged-particle dynamics, SMAI J. Comput. Math., 3, 205-218, 2017 · Zbl 1416.78037 · doi:10.5802/smai-jcm.25
[24] Hairer, E.; Lubich, C., Energy behaviour of the Boris method for charged-particle dynamics, BIT Numer. Math., 58, 969-979, 2018 · Zbl 1404.65309 · doi:10.1007/s10543-018-0713-1
[25] Chartier, P.; Crouseilles, N.; Lemou, M.; Méhats, F.; Zhao, X., Uniformly accurate methods for Vlasov equations with non-homogeneous strong magnetic field, Math. Comput., 88, 2697-2736, 2019 · Zbl 1416.65189 · doi:10.1090/mcom/3436
[26] Hairer, E.; Lubich, C., Long-term analysis of a variational integrator for charged-particle dynamics in a strong magnetic field, Numer. Math., 144, 699-728, 2020 · Zbl 1432.78013 · doi:10.1007/s00211-019-01093-z
[27] Hairer, E.; Lubich, C.; Wang, B., A filtered Boris algorithm for charged-particle dynamics in a strong magnetic field, Numer. Math., 144, 787-809, 2020 · Zbl 1434.65312 · doi:10.1007/s00211-020-01105-3
[28] Wang, B.; Zhao, X., Error estimates of some splitting schemes for charged-particle dynamics under strong magnetic field, SIAM J. Numer. Anal., 59, 2075-2105, 2021 · Zbl 1507.65290 · doi:10.1137/20M1340101
[29] Hairer, E.; Lubich, C.; Shi, Y., Large-stepsize integrators for charged-particle dynamics over multiple time scales, Numer. Math., 151, 659-691, 2022 · Zbl 1510.65314 · doi:10.1007/s00211-022-01298-9
[30] Crouseilles, N.; Lemou, M.; Méhats, F.; Zhao, X., Uniformly accurate particle-in-cell method for the long time solution of the two-dimensional Vlasov-Poisson equation with uniform strong magnetic field, J. Comput. Phys., 346, 172-190, 2017 · Zbl 1380.65311 · doi:10.1016/j.jcp.2017.06.011
[31] Chartier, P.; Crouseilles, N.; Lemou, M.; Méhats, F.; Zhao, X., Uniformly accurate methods for three dimensional Vlasov equations under strong magnetic field with varying direction, SIAM J. Sci. Comput., 42, 2, 2020 · Zbl 1447.65105 · doi:10.1137/19M127402X
[32] McLachlan, RI; Quispel, GRW, Splitting methods, Acta Numer., 11, 341-434, 2002 · Zbl 1105.65341 · doi:10.1017/S0962492902000053
[33] Quispel, GRW; McLaren, DI, A new class of energy-preserving numerical integration methods, J. Phys. A: Math. Theor., 41, 2008 · Zbl 1132.65065 · doi:10.1088/1751-8113/41/4/045206
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.