×

Fourier-Mukai partners of canonical covers of bielliptic and Enriques surfaces. (English) Zbl 1296.18012

The derived category \(\text{D}^{\text{b}}(X)\) of a variety \(X\) encodes fundamental geometric information and an interesting path in order to decode this information is to study the relationship between the number of Fourier-Mukai partners of a variety (that is, the derived equivalent varieties) and of its canonical cover.
This paper addresses this problem for surfaces of Kodaira dimension \(0\). More precisely, the author proves that the canonical covering of an Enriques surface does not admit non-isomorphic Fourier-Mukai partners and also shows that the canonical cover \(A\) of a bielliptic surface can have at most one non-trivial Fourier-Mukai partner, given by \(\widehat{A}\).
These results are used to establish, respectively, that birational Hilbert schemes of points on K3 surfaces that cover Enriques surfaces are isomorphic and that birational generalised Kummer varieties \(K_m(A)\) and \(K_m(B)\) (\(m\geq 2\)) are such that the abelian surfaces \(A\) and \(B\) are either isomorphic or \(B\) is isomorphic to \(\widehat{A}\).
These interesting results are presented in a nicely written and well organized paper which shows that the geometric information imposes restrictions on the number of Fourier-Mukai partners.

MSC:

18E30 Derived categories, triangulated categories (MSC2010)
11G10 Abelian varieties of dimension \(> 1\)
14J28 \(K3\) surfaces and Enriques surfaces

References:

[1] W. BARTH - K. HULEK - C. PETERS - A. VAN DE VEN, Compact complex surfaces, Springer, Berlin (2004). · Zbl 1036.14016
[2] T. BRIDGELAND, Stability conditions on K3 surfaces, Duke Math. J. 141 (2008), pp. 241-291. · Zbl 1138.14022 · doi:10.1215/S0012-7094-08-14122-5
[3] T. BRIDGELAND - A. MACIOCIA, Complex surfaces with equivalent derived categories, Math. Z. 236 (2001), pp. 677-697. · Zbl 1081.14023 · doi:10.1007/PL00004847
[4] J. H. CONWAY - N. J. A. SLOANE, Sphere packings, lattices and groups, 3rd ed., Springer, New York, 1999. · Zbl 0915.52003
[5] S. HOSONO - B. H. LIAN - K. OGUISO - S.-T. YAU, Kummer structures on a K3 surface: An old question of T. Shioda, Duke Math. J. 120 (2003), pp. 635-647. · Zbl 1051.14046 · doi:10.1215/S0012-7094-03-12036-0
[6] S. HOSONO - B. H. LIAN - K. OGUISO - S.-T. YAU, Fourier-Mukai numbers of a K3 surface, In: Algebraic structures and moduli spaces, pp. 177-192. Amer. Math. Soc., Providence, RI (2004). · Zbl 1076.14045
[7] D. HUYBRECHTS - P. STELLARI, Equivalences of twisted K3 surfaces, Math. Ann. 332 (2005), pp. 901-936. · Zbl 1092.14047 · doi:10.1007/s00208-005-0662-2
[8] J. H. KEUM, Every algebraic Kummer surface is the K3-cover of an Enriques surface, Nagoya Math. J. 118 (1990), pp. 99-110. · Zbl 0699.14047
[9] S. MA, Twisted Fourier-Mukai number of a K3 surface, Trans. Amer. Math. Soc. 362 (2010), pp. 537-552. · Zbl 1184.14068 · doi:10.1090/S0002-9947-09-04963-0
[10] E. MACRIÁ - S. MEHROTRA - P. STELLARI, Inducing stability conditions, J. Alg. Geom. 18 (2009), pp. 605-649. · Zbl 1175.14010 · doi:10.1090/S1056-3911-09-00524-4
[11] S. MUKAI, Duality between D(X) and D(\? X) and its application to Picard sheaves, Nagoya Math. J. 81 (1981), pp. 153-175. · Zbl 0417.14036
[12] S. MUKAI, On the moduli space of bundles on K3 surfaces, I, in: Vector bundles on algebraic varieties (Bombay, 1984), pp. 341-413, Tata Inst. Fund. Res., Bombay (1987).
[13] Y. NAMIKAWA, Periods of Enriques surfaces, Math. Ann. 270 (1985), pp. 201-222. · Zbl 0536.14024 · doi:10.1007/BF01456182
[14] V. V. NIKULIN, Integral symmetric bilinear forms and some of their applications, Math. USSR Izv. 14 (1980), pp. 103-167. · Zbl 0427.10014 · doi:10.1070/IM1980v014n01ABEH001060
[15] K. OGUISO - S. SCHROÈER, Enriques manifolds, J. Reine Angew. Math. (to appear).
[16] H. OHASHI, On the number of Enriques quotients of a K3 surface, Publ. Res. Inst. Math. Sci. 43 (2007), pp. 181-200. · Zbl 1133.14038 · doi:10.2977/prims/1199403814
[17] D. ORLOV, Equivalences of derived categories and K3 surfaces, J. Math. Sci. 84 (1997), pp. 1361-1381. · Zbl 0938.14019 · doi:10.1007/BF02399195
[18] D. ORLOV, Derived categories of coherent sheaves on abelian varieties and equivalences between them, Izv. Math. 66 (2002), pp. 569-594. · Zbl 1031.18007 · doi:10.1070/IM2002v066n03ABEH000389
[19] D. PLOOG, Equivariant autoequivalences for finite group actions, Adv. Math. 216 (2007), pp. 62-74. · Zbl 1167.14031 · doi:10.1016/j.aim.2007.05.002
[20] T. SHIODA, Some remarks on abelian varieties, J. Fac. Sci. Univ. Tokyo Sect. IA 24 (1977), pp. 11-21. · Zbl 0406.14023
[21] T. SHIODA, The period map of abelian surfaces, J. Fac. Sci. Univ. Tokyo Sect. IA 25 (1977), pp. 47-59. · Zbl 0405.14021
[22] T. SHIODA - N. MITANI, Singular abelian surfaces and binary quadratic forms, In: Classification of algebraic varieties and compact complex manifolds, Springer, Berlin (1974), pp. 259-287.
[23] P. STELLARI, Derived categories and Kummer varieties, Math. Z. 256 (2007), pp. 425-441. · Zbl 1138.18006 · doi:10.1007/s00209-006-0088-x
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.