×

Twisted Fourier-Mukai number of a \(K3\) surface. (English) Zbl 1184.14068

The author gives a counting formula for the twisted Fourier-Mukai partners of a projective \(K3\) surface. If \(S\) is a \(K3\) surface and \(\alpha\) a class in the Brauer group of \(S\), one can consider the abelian category \(Coh(S,\alpha)\) of \(\alpha\)-twisted coherent sheaves on \(S\) and its derived category \(D(S,\alpha)\). Given a projective \(K3\) surface \(S\), a (twisted) Fourier-Mukai partner of \(S\) is a projective \(K3\) surface \(S'\) together with an equivalence between \(D(S)\) and \(D(S')\) (resp. \(D(S',\alpha)\) for some \(\alpha\) in \(Br(S')\)).
The number of Fourier-Mukai partners (up to isomorphism) of a \(K3\) surface \(S\) is finite and has been calculated by [S. Hosono, B. H. Lian, K. Oguiso and S.-T. Yau, Contemp. Math. 322, 43–55 (2003; Zbl 1058.14056)]. In the present paper, the author gives a formula for the number of twisted Fourier-Mukai partners of \(S\). This number depends in particular on the order \(d\) of the element \(\alpha\) and coincides with the known result for \(d=1\). As an application, the author considers a \(K3\) surface \(S\) whose Picard group is generated by an element \(H\) of self-intersection \(2n\) and relates the twisted Fourier-Mukai partners of \(S\) to coarse moduli spaces of semistable vector bundles on \(S\). This extends known results in the untwisted case [S. Hosono, B. H. Lian, K. Oguiso and S.-T. Yau, loc. cit. and P. Stellari, Geom. Dedicata 108, 1–14 (2004; Zbl 1072.14043)].

MSC:

14J28 \(K3\) surfaces and Enriques surfaces

References:

[1] Căldăraru, A, Derived Categories of Twisted Sheaves on Calabi-Yau Manifolds. Ph.D. thesis, Cornell University, 2000.
[2] Andrei Căldăraru, Nonfine moduli spaces of sheaves on \?3 surfaces, Int. Math. Res. Not. 20 (2002), 1027 – 1056. · Zbl 1057.14020 · doi:10.1155/S1073792802109093
[3] Alberto Canonaco and Paolo Stellari, Twisted Fourier-Mukai functors, Adv. Math. 212 (2007), no. 2, 484 – 503. · Zbl 1116.14009 · doi:10.1016/j.aim.2006.10.010
[4] Shinobu Hosono, Bong H. Lian, Keiji Oguiso, and Shing-Tung Yau, Fourier-Mukai partners of a \?3 surface of Picard number one, Vector bundles and representation theory (Columbia, MO, 2002) Contemp. Math., vol. 322, Amer. Math. Soc., Providence, RI, 2003, pp. 43 – 55. · Zbl 1058.14056 · doi:10.1090/conm/322/05678
[5] Shinobu Hosono, Bong H. Lian, Keiji Oguiso, and Shing-Tung Yau, Fourier-Mukai number of a K3 surface, Algebraic structures and moduli spaces, CRM Proc. Lecture Notes, vol. 38, Amer. Math. Soc., Providence, RI, 2004, pp. 177 – 192. · Zbl 1076.14045
[6] Daniel Huybrechts and Paolo Stellari, Equivalences of twisted \?3 surfaces, Math. Ann. 332 (2005), no. 4, 901 – 936. · Zbl 1092.14047 · doi:10.1007/s00208-005-0662-2
[7] Daniel Huybrechts and Paolo Stellari, Proof of Căldăraru’s conjecture. Appendix: ”Moduli spaces of twisted sheaves on a projective variety” [in Moduli spaces and arithmetic geometry, 1 – 30, Math. Soc. Japan, Tokyo, 2006; MR2306170] by K. Yoshioka, Moduli spaces and arithmetic geometry, Adv. Stud. Pure Math., vol. 45, Math. Soc. Japan, Tokyo, 2006, pp. 31 – 42.
[8] S. Mukai, On the moduli space of bundles on \?3 surfaces. I, Vector bundles on algebraic varieties (Bombay, 1984) Tata Inst. Fund. Res. Stud. Math., vol. 11, Tata Inst. Fund. Res., Bombay, 1987, pp. 341 – 413. · Zbl 0674.14023
[9] V. V. Nikulin, Integer symmetric bilinear forms and some of their geometric applications, Izv. Akad. Nauk SSSR Ser. Mat. 43 (1979), no. 1, 111 – 177, 238 (Russian). · Zbl 0408.10011
[10] D. O. Orlov, Equivalences of derived categories and \?3 surfaces, J. Math. Sci. (New York) 84 (1997), no. 5, 1361 – 1381. Algebraic geometry, 7. · Zbl 0938.14019 · doi:10.1007/BF02399195
[11] I. I. Pjateckiĭ-Šapiro and I. R. Šafarevič, Torelli’s theorem for algebraic surfaces of type \?3, Izv. Akad. Nauk SSSR Ser. Mat. 35 (1971), 530 – 572 (Russian).
[12] Paolo Stellari, Some remarks about the FM-partners of \?3 surfaces with Picard numbers 1 and 2, Geom. Dedicata 108 (2004), 1 – 13. · Zbl 1072.14043 · doi:10.1007/s10711-004-9291-7
[13] Andrei N. Todorov, Applications of the Kähler-Einstein-Calabi-Yau metric to moduli of \?3 surfaces, Invent. Math. 61 (1980), no. 3, 251 – 265. · Zbl 0472.14006 · doi:10.1007/BF01390067
[14] Kōta Yoshioka, Moduli spaces of twisted sheaves on a projective variety, Moduli spaces and arithmetic geometry, Adv. Stud. Pure Math., vol. 45, Math. Soc. Japan, Tokyo, 2006, pp. 1 – 30. · Zbl 1118.14013
[15] Géométrie des surfaces \?3: modules et périodes, Société Mathématique de France, Paris, 1985 (French). Papers from the seminar held in Palaiseau, October 1981 – January 1982; Astérisque No. 126 (1985) (1985).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.