×

Bimorphisms and attribute implications in heterogeneous formal contexts. (English) Zbl 07905208

Summary: Formal concept analysis is a powerful mathematical framework based on mathematical logic and lattice theory for analyzing object-attribute relational systems. Over the decades, Formal concept analysis has evolved from its theoretical foundations into a versatile methodology applied across various disciplines. A heterogeneous formal context provides a feasible generalization of a formal context, enabling diverse truth-degrees of objects, attributes, and fuzzy relations. In our paper, we present extended theoretical results on heterogeneous formal contexts, including bimorphisms, Galois connections, and heterogeneous attribute implications. We recall the basic notions and properties of the heterogeneous formal context and its concept lattice. Moreover, we present extended results on bimorphisms and Galois connections in a heterogeneous formal context, including a self-contained proof of the main result. We include examples of introduced notions in heterogeneous formal contexts and two-valued logic. We propose the extension of attribute implications for heterogeneous formal contexts and explore their validity. By embracing heterogeneity in Formal concept analysis, we enrich its extended theoretical foundations and pave the way for innovative applications across diverse domains, including personal data protection and cybersecurity.

MSC:

06-XX Order, lattices, ordered algebraic structures

Software:

fcaR
Full Text: DOI

References:

[1] Antoni, L.; Eliaš, P.; Krajči, S.; Krídlo, O., Heterogeneous formal context and its decomposition by heterogeneous fuzzy subsets, Fuzzy Sets Syst., 451, 361-384, 2022 · Zbl 1522.68548
[2] Antoni, L.; Krajči, S.; Krídlo, O.; Macek, B.; Pisková, L., On heterogeneous formal contexts, Fuzzy Sets Syst., 234, 22-33, 2014 · Zbl 1315.68232
[3] Antoni, L.; Krajči, S.; Krídlo, O., Constraint heterogeneous concept lattices and concept lattices with heterogeneous hedges, Fuzzy Sets Syst., 303, 21-37, 2016 · Zbl 1378.68139
[4] Antoni, L.; Krajči, S.; Krídlo, O., On fuzzy generalizations of concept lattices, (Kóczy, L.; Medina, J., Interactions Between Computational Intelligence and Mathematics. Interactions Between Computational Intelligence and Mathematics, Studies in Computational Intelligence, vol. 758, 2018, Springer: Springer Cham), 79-103 · Zbl 1429.68268
[5] Barbut, M.; Monjardet, B., Ordre et classification, algèbre et combinatoire, 1970, Hachette: Hachette Paris · Zbl 0267.06001
[6] Bělohlávek, R., Fuzzy concepts and conceptual structures: induced similarities, (Joint Conference on Information Sciences, Durham, USA, 1998), 179-182
[7] Bělohlávek, R., Fuzzy relational systems: foundations and principles, (International Federation for System Research International Series on Systems Science and Engineering. International Federation for System Research International Series on Systems Science and Engineering, Springer Science, vol. 20, 2002, LLC) · Zbl 1067.03059
[8] Bělohlávek, R., Algorithms for fuzzy concept lattices, (4th Int. Conf. Recent Adv. Soft Comput, Nottingham, U.K., 2002), 200-205
[9] Bělohlávek, R., Concept lattices and order in fuzzy logic, Ann. Pure Appl. Log., 128, 277-298, 2004 · Zbl 1060.03040
[10] Bělohlávek, R.; Chlupová, M.; Vychodil, V., Implications from data with fuzzy attributes, (AISTA 2004 in Cooperation with the IEEE Computer Society Proceedings, 2004), 1-5
[11] Bělohlávek, R.; Cordero, P.; Enciso, M.; Mora, A.; Vychodil, V., Automated prover for attribute dependencies in data with grades, Int. J. Approx. Reason., 70, 51-67, 2016 · Zbl 1351.68088
[12] Bělohlávek, R.; Sklenář, V.; Zacpal, J., Crisply generated fuzzy concepts, (Proceedings of ICFCA 2005. Proceedings of ICFCA 2005, Lecture Notes in Computer Science, vol. 3403, 2005, Springer-Verlag: Springer-Verlag Berlin/Heidelberg), 269-284 · Zbl 1078.68142
[13] Bělohlávek, R.; Vychodil, V., Implications from data with fuzzy attributes vs. scaled binary attributes, (The IEEE International Conference on Fuzzy Systems, Reno (Nevada, USA), 2005), 1050-1055
[14] Bělohlávek, R.; Vychodil, V., Reducing the size of fuzzy concept lattices by hedges, (FUZZ-IEEE 2005, the IEEE International Conference on Fuzzy Systems, Reno (Nevada, USA), 2005), 663-668
[15] Bělohlávek, R.; Vychodil, V., Attribute implications in a fuzzy setting, (Proceedings of ICFCA 2006, Dresden, Germany, 2006), 45-60 · Zbl 1177.68203
[16] Bělohlávek, R.; Vychodil, V., Reducing the size of if-then rules generated from data tables with graded attributes, (2006 International Conference on Computational Intelligence for Modelling Control and Automation (CIMCA’06), 2006, IEEE), 174
[17] Bělohlávek, R.; Vychodil, V., Fuzzy concept lattices constrained by hedges, J. Adv. Comput. Intell. Intell. Inform., 11, 536-545, 2007
[18] Bělohlávek, R.; Vychodil, V., Formal concept analysis and linguistic hedges, Int. J. Gen. Syst., 41, 503-532, 2012 · Zbl 1277.93045
[19] Bělohlávek, R.; Vychodil, V., Attribute dependencies for data with grades I, Int. J. Gen. Syst., 45, 864-888, 2016 · Zbl 1404.68158
[20] Bělohlávek, R.; Vychodil, V., Attribute dependencies for data with grades II, Int. J. Gen. Syst., 46, 66-92, 2016 · Zbl 1404.68158
[21] Ben Yahia, S.; Jaoua, A., Discovering knowledge from fuzzy concept lattice, (Data Mining and Computational Intelligence, 2001, Springer), 169-190
[22] Birkhoff, G., Lattice Theory, 1940, American Mathematical Society · JFM 66.0100.04
[23] Burusco Juandeaburre, A.; Fuentes-González, R., The study of the L-fuzzy concept lattice, Mathw. Soft Comput., 3, 209-218, 1994 · Zbl 0827.06004
[24] Butka, P.; Pócs, J., Generalization of one-sided concept lattices, Comput. Inform., 32, 355-370, 2013 · Zbl 1413.06008
[25] Butka, P.; Pócs, J.; Pócsová, J., Reduction of concepts from generalized one-sided concept lattice based on subsets quality measure, (New Research in Multimedia and Internet Systems. New Research in Multimedia and Internet Systems, Advances in Intelligent Systems and Computing, vol. 314, 2015, Springer), 101-111
[26] Carpineto, C.; Romano, G., Concept Data Analysis. Theory and Applications, 2004, John Wiley & Sons · Zbl 1083.68117
[27] Cordero, P.; Enciso, M.; Mora, A.; Ojeda-Aciego, M.; Rossi, C., Knowledge discovery in social networks by using a logic-based treatment of implications, Knowl.-Based Syst., 87, 16-25, 2015
[28] Cordero, P.; Enciso, M.; López-Rodríguez, D.; Mora, Á., FcaR, Formal concept analysis with R, R J., 14, 341-361, 2022
[29] Cordero, P.; Enciso, M.; López, D.; Mora, Á., A conversational recommender system for diagnosis using fuzzy rules, Expert Syst. Appl., 154, 1-12, 2020
[30] Cornejo, M. E.; Medina, J.; Ramírez, E., A comparative study of adjoint triples, Fuzzy Sets Syst., 211, 1-14, 2013 · Zbl 1272.03111
[31] Cornejo, M. E.; Medina, J.; Ramírez-Poussa, E., Characterizing reducts in multi-adjoint concept lattices, Inf. Sci., 422, 364-376, 2018 · Zbl 1436.68330
[32] Cornejo, M. E.; Medina, J.; Ramírez-Poussa, E., Implication operators generating pairs of weak negations and their algebraic structure, Fuzzy Sets Syst., 405, 18-39, 2021 · Zbl 1464.03091
[33] Cornejo, M. E.; Medina, J.; Ocana, F. J., Attribute implications in multi-adjoint concept lattices with hedges, Fuzzy Sets Syst., 479, Article 108854 pp., 2024
[34] Dubois, D.; Medina, J.; Prade, H.; Ramírez-Poussa, E., Disjunctive attribute dependencies in formal concept analysis under the epistemic view of formal contexts, Inf. Sci., 561, 31-51, 2021 · Zbl 1539.68340
[35] Eliaš, P.; Antoni, L.; Krídlo, O.; Krajči, S., Additional notes on heterogeneous concept-forming operators, (Computational Intelligence and Mathematics for Tackling Complex Problems 5, 2024, Springer Nature), 1-7
[36] Ganter, B.; Wille, R., Formal Concept Analysis, Mathematical Foundation, 1999, Springer Science & Business Media · Zbl 0909.06001
[37] Gottwald, S., A Treatise on Many-Valued Logic, 2001, Research Studies Press: Research Studies Press Baldock · Zbl 1048.03002
[38] Hájek, P., Metamathematics of Fuzzy Logic, 1998, Kluwer: Kluwer Dordrecht · Zbl 0937.03030
[39] Halaš, R.; Pócs, J., Generalized one-sided concept lattices with attribute preferences, Inf. Sci., 303, 50-60, 2015 · Zbl 1360.68808
[40] Halaš, R.; Mesiar, R.; Pócs, J., Description of sup- and inf-preserving aggregation functions via families of clusters in data tables, Inf. Sci., 400, 173-183, 2017 · Zbl 1429.68274
[41] Hohle, U., Modules in the category \(\mathsf{Sup} \), (Saminger-Platz, S.; Mesiar, R., On Logical, Algebraic, and Probabilistic Aspects of Fuzzy Set Theory. On Logical, Algebraic, and Probabilistic Aspects of Fuzzy Set Theory, Studies in Fuzziness and Soft Computing, vol. 336, 2016, Springer), 23-56 · Zbl 1429.03169
[42] Hučková, R.; Bachňáková Rózenfeldová, L.; Sokol, P.; Briškárová, S., Cybersecurity contracts: a critical review, (IDIMT 2023: New Challenges for ICT and Management - 31st Interdisciplinary Information Management Talks, 2023), 89-99
[43] Krajči, S., Cluster based efficient generation of fuzzy concepts, Neural Netw. World, 13, 521-530, 2003
[44] Krajči, S., A generalized concept lattice, Log. J. IGPL, 13, 543-550, 2005 · Zbl 1088.06005
[45] Krídlo, O.; Krajči, S.; Antoni, Ľ., Formal concept analysis of higher order, Int. J. Gen. Syst., 45, 116-134, 2016 · Zbl 1365.68416
[46] Kuznetsov, S. O.; Obiedkov, S. A., Comparing performance of algorithms for generating concept lattices, J. Exp. Theor. Artif. Intell., 14, 189-216, 2002 · Zbl 1024.68020
[47] Madrid, N.; Ojeda-Aciego, M., Multi-adjoint lattices from adjoint triples with involutive negation, Fuzzy Sets Syst., 405, 88-105, 2021 · Zbl 1464.03093
[48] Medina, J.; Ojeda-Aciego, M.; Pócs, J.; Ramírez-Poussa, E., On the Dedekind-MacNeille completion and formal concept analysis based on multilattices, Fuzzy Sets Syst., 303, 1-20, 2016 · Zbl 1386.06003
[49] Medina, J.; Ojeda-Aciego, M.; Ruiz-Calviño, J., On multi-adjoint concept lattices: definition and representation theorem, (Proceedings of ICFCA 2007, 2007, Clermont-Ferrand: Clermont-Ferrand France), 197-209 · Zbl 1187.68588
[50] Medina, J.; Ojeda-Aciego, M.; Ruiz-Calviño, J., Formal concept analysis via multi-adjoint concept lattices, Fuzzy Sets Syst., 160, 130-144, 2009 · Zbl 1187.68589
[51] Medina, J.; Ojeda-Aciego, M., Multi-adjoint t-concept lattices, Inf. Sci., 180, 712-725, 2010 · Zbl 1187.68587
[52] Medina, J.; Ojeda-Aciego, M., On multi-adjoint concept lattices based on heterogeneous conjunctors, Fuzzy Sets Syst., 208, 95-110, 2012 · Zbl 1252.06003
[53] Missaoui, R.; Kwuida, L.; Abdessalem, T., Complex Data Analytics with Formal Concept Analysis, 2022, Springer · Zbl 1491.68021
[54] Pérez-Gámez, F.; López-Rodríguez, D.; Cordero, P.; Mora, Á.; Ojeda-Aciego, M., Simplifying implications with positive and negative attributes: a logic-based approach, Mathematics, 10, 607, 2022
[55] Pócs, J., Note on generating fuzzy concept lattices via Galois connections, Inf. Sci., 185, 128-136, 2012 · Zbl 1239.68071
[56] Pócs, J., On possible generalization of fuzzy concept lattices using dually isomorphic retracts, Inf. Sci., 210, 89-98, 2012 · Zbl 1250.06001
[57] Pócs, J.; Pócsová, J., On some general aspects of forming fuzzy concept lattices, Appl. Math. Sci., 7, 5559-5605, 2013
[58] Poelmans, J.; Kuznetsov, S. O.; Ignatov, D. I.; Dedene, G., Formal concept analysis in knowledge processing: a survey on models and techniques, Expert Syst. Appl., 40, 6601-6623, 2013
[59] Pollandt, S., Datenanalyse mit Fuzzy-Begriffen, (Begriffliche Wissensverarbeitung: Methoden und Anwendungen, 2000, Springer), 72-98 · Zbl 0958.68162
[60] Priss, U., Formal concept analysis in information science, (Blaise, C., Annual Review of Information Science and Technology, 2006, ASIST), 521-543
[61] Wille, R., Restructuring lattice theory: an approach based on hierarchies of Concepts, (Rival, I., Ordered Sets, 1982, Reidel: Reidel Dordrecht-Boston), 445-470 · Zbl 0491.06008
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.