×

Attribute dependencies for data with grades \(I\). (English) Zbl 1404.68158

Summary: This paper examines attribute dependencies in data that involve grades, such as a grade to which an object is red or a grade to which two objects are similar. We thus extend the classical agenda by allowing graded, or “fuzzy”, attributes instead of Boolean, yes-or-no attributes in case of attribute implications, and allowing approximate match based on degrees of similarity instead of exact match based on equality in case of functional dependencies. In a sense, we move from bivalence, inherently present in the now-available theories of dependencies, to a more flexible setting that involves grades. Such a shift has far-reaching consequences. We argue that a reasonable theory of dependencies may be developed by making use of mathematical fuzzy logic, a recently developed many-valued logic. Namely, the theory of dependencies is then based on a solid logic calculus the same way classical dependencies are based on classical logic. For instance, rather than handling degrees of similarity in an ad hoc manner, we consistently treat them as truth values, the same way as true (match) and false (mismatch) are treated in classical theories. In addition, several notions intuitively embraced in the presence of grades, such as a degree of validity of a particular dependence or a degree of entailment, naturally emerge and receive a conceptually clean treatment in the presented approach. In the first part of this two-part paper, we discuss motivations, provide basic notions of syntax and semantics and develop basic results which include entailment of dependencies, associated closure structures and a logic of dependencies with two versions of completeness theorem.

MSC:

68T37 Reasoning under uncertainty in the context of artificial intelligence
03B52 Fuzzy logic; logic of vagueness
68P15 Database theory

References:

[1] DOI: 10.1002/malq.19990450408 · Zbl 0938.03079 · doi:10.1002/malq.19990450408
[2] DOI: 10.1007/978-1-4615-0633-1 · doi:10.1007/978-1-4615-0633-1
[3] DOI: 10.1016/j.apal.2003.01.001 · Zbl 1060.03040 · doi:10.1016/j.apal.2003.01.001
[4] DOI: 10.1093/jigpal/jzi038 · Zbl 1089.06001 · doi:10.1093/jigpal/jzi038
[5] DOI: 10.1080/03081079.2012.685936 · Zbl 1277.93045 · doi:10.1080/03081079.2012.685936
[6] DOI: 10.1007/s00153-015-0440-0 · Zbl 1477.03079 · doi:10.1007/s00153-015-0440-0
[7] Belohlavek R., International Journal of General Systems
[8] DOI: 10.1002/0470011297 · doi:10.1002/0470011297
[9] Cintula P., Handbook of Mathematical Fuzzy Logic (2011) · Zbl 1283.03002
[10] DOI: 10.1145/362384.362685 · Zbl 0207.18003 · doi:10.1145/362384.362685
[11] DOI: 10.1017/CBO9780511809088 · doi:10.1017/CBO9780511809088
[12] DOI: 10.1147/rd.175.0374 · Zbl 0259.68016 · doi:10.1147/rd.175.0374
[13] DOI: 10.1147/rd.216.0534 · Zbl 0366.68022 · doi:10.1147/rd.216.0534
[14] DOI: 10.1006/jcss.1998.1600 · Zbl 0941.68557 · doi:10.1006/jcss.1998.1600
[15] DOI: 10.1145/565117.565143 · doi:10.1145/565117.565143
[16] Galatos N., Residuated Lattices: An Algebraic Glimpse at Substructural Logics (2007) · Zbl 1171.03001
[17] DOI: 10.1007/978-3-642-59830-2 · doi:10.1007/978-3-642-59830-2
[18] Gerla G., Fuzzy Logic. Mathematical Tools for Approximate Reasoning (2001)
[19] DOI: 10.1016/0022-247X(67)90189-8 · Zbl 0145.24404 · doi:10.1016/0022-247X(67)90189-8
[20] Goguen J. A., Synthese 18 pp 325– (1968)
[21] Gottwald S., A Treatise on Many-valued Logic (2001) · Zbl 1048.03002
[22] DOI: 10.2178/bsl/1208442828 · Zbl 1144.03023 · doi:10.2178/bsl/1208442828
[23] Guigues J.-L., Mathématiques et Sciences Humaines 95 pp 5– (1986)
[24] DOI: 10.1007/978-94-011-5300-3 · doi:10.1007/978-94-011-5300-3
[25] DOI: 10.1016/S0165-0114(01)00103-8 · Zbl 0997.03028 · doi:10.1016/S0165-0114(01)00103-8
[26] DOI: 10.1016/j.fss.2005.10.004 · Zbl 1108.03028 · doi:10.1016/j.fss.2005.10.004
[27] DOI: 10.1007/978-3-642-66943-9 · doi:10.1007/978-3-642-66943-9
[28] DOI: 10.1016/j.jcss.2009.05.004 · Zbl 1186.68160 · doi:10.1016/j.jcss.2009.05.004
[29] DOI: 10.1145/380995.380999 · doi:10.1145/380995.380999
[30] Maier D., The Theory of Relational Databases (1983) · Zbl 0519.68082
[31] DOI: 10.1016/B978-044451814-9/50007-0 · doi:10.1016/B978-044451814-9/50007-0
[32] DOI: 10.1007/978-1-4615-5217-8 · doi:10.1007/978-1-4615-5217-8
[33] DOI: 10.1002/malq.19790250304 · Zbl 0435.03020 · doi:10.1002/malq.19790250304
[34] DOI: 10.1016/0168-0072(87)90081-9 · Zbl 0633.03050 · doi:10.1016/0168-0072(87)90081-9
[35] Tan P.-N., Introduction to Data Mining (2005)
[36] DOI: 10.1090/S0002-9947-1939-1501995-3 · JFM 65.0084.01 · doi:10.1090/S0002-9947-1939-1501995-3
[37] DOI: 10.1016/S0019-9958(68)90211-8 · Zbl 0182.33301 · doi:10.1016/S0019-9958(68)90211-8
[38] DOI: 10.1109/2.53 · doi:10.1109/2.53
[39] DOI: 10.1145/175247.175255 · doi:10.1145/175247.175255
[40] DOI: 10.1016/j.ins.2008.02.012 · Zbl 1148.68047 · doi:10.1016/j.ins.2008.02.012
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.