×

Numerical methods for coupling multigroup radiation with ion and electron temperatures. (English) Zbl 07614287

Summary: We study the numerical approximation of a multigroup three temperature plasma model. A reformulation of the model is proposed in order to derive robust convex combination-based schemes. The produced schemes are naturally well-suited to handle stiff source terms and can be analyzed. However, because of the very large size of the resulting linear system, a direct numerical solving cannot be performed in practice if a large number of cells or frequency groups is used. Consequently, a decoupling procedure is presented in order to greatly reduce the numerical cost of the method while keeping the fundamental discrete properties. After detailing the schemes derivation followed by the practical numerical resolution and the decoupling procedure, a numerical analysis is performed, and strong stability properties are proven. Several numerical test cases are carried out to demonstrate the interest of the numerical approach.

MSC:

65Mxx Numerical methods for partial differential equations, initial value and time-dependent initial-boundary value problems
Full Text: DOI

References:

[1] ; Bolding, S.; Hansel, J.; Edwards, J.; Morel, J.; Lowrie, R., Second-order discretization in space and time for radiation-hydrodynamics, Journal of Computational Physics, 338 (2017) · Zbl 1415.65184
[2] 10.1086/190822 · doi:10.1086/190822
[3] 10.1086/309244 · doi:10.1086/309244
[4] 10.1103/PhysRevE.100.043201 · doi:10.1103/PhysRevE.100.043201
[5] 10.1088/0067-0049/199/1/9 · doi:10.1088/0067-0049/199/1/9
[6] ; Decoster, A., Fluids equations and transport coefficients of plasmas (1998)
[7] 10.1007/s10915-020-01155-7 · Zbl 1434.65114 · doi:10.1007/s10915-020-01155-7
[8] ; Evans, T.; Clarno, K.; Morel, J., A Transport Acceleration Scheme for Multigroup Discrete Ordinates with Upscattering, Nuclear Science and Engineering, 165 (2010)
[9] 10.1016/j.jcp.2007.02.020 · Zbl 1147.82354 · doi:10.1016/j.jcp.2007.02.020
[10] 10.1086/428642 · doi:10.1086/428642
[11] ; Gonzalez, M.; Vaytet, N.; Commercon, B.; Masson, J., Multigroup radiation hydrodynamics with flux-limited diffusion and adaptive mesh refinement, Astron. Astrophys., 578 (2015)
[12] 10.1146/annurev-nucl-102711-094901 · doi:10.1146/annurev-nucl-102711-094901
[13] 10.1016/j.physrep.2007.02.002 · doi:10.1016/j.physrep.2007.02.002
[14] 10.1016/j.jcp.2012.11.034 · Zbl 1286.65115 · doi:10.1016/j.jcp.2012.11.034
[15] 10.1016/0021-9991(87)90019-2 · Zbl 0628.65128 · doi:10.1016/0021-9991(87)90019-2
[16] 10.1086/380191 · doi:10.1086/380191
[17] 10.1086/421012 · doi:10.1086/421012
[18] 10.1137/0518030 · Zbl 0654.47036 · doi:10.1137/0518030
[19] ; Mihalas, D.; Mihalas, B., Foundations of Radiation Hydrodynamics (1984) · Zbl 0651.76005
[20] 10.1086/173163 · doi:10.1086/173163
[21] 10.1016/j.jqsrt.2011.03.013 · doi:10.1016/j.jqsrt.2011.03.013
[22] 10.1016/0022-4073(85)90005-6 · doi:10.1016/0022-4073(85)90005-6
[23] ; Semenov, D.; Henning, T.; Helling, C.; Ilgner, M.; Sedlmayr, E., Rosseland and Planck mean opacities for protoplanetary discs, Astron. Astrophys., 410, 2, 611 (2003)
[24] 10.1016/S0022-4073(98)00105-8 · doi:10.1016/S0022-4073(98)00105-8
[25] ; Swesty, F. D.; Myra, E. S., A numerical algorithm for modeling multigroup neutrino-radiation hydrodynamics in two spatial dimensions, Astrophysical Journal, Supplement Series, 181(1), 1 (2009)
[26] ; Urbatsch, T. J.; Evans, T. M., Milagro Version 2 : An implicit Monte Carlo Code for Thermal Radiative Transfer : Capabilities, Development, and Usage, LA-14195-MS (2006)
[27] 10.1088/0067-0049/194/2/23 · doi:10.1088/0067-0049/194/2/23
[28] 10.13182/NSE11-101 · doi:10.13182/NSE11-101
[29] 10.1088/0067-0049/196/2/20 · doi:10.1088/0067-0049/196/2/20
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.