×

Numerical resolution of a three temperature plasma model. (English) Zbl 1434.65114

Summary: This paper is devoted to the numerical approximation of a three temperature plasma model: one for the ions, one for the electrons and one for the radiation (photons). A reformulation of the model is proposed that allows to build a convex combination-based scheme that unconditionally satisfies a maximum principle, at each sub-iteration of the non-linear iterative process. This yields a very robust scheme that can handle stiff source terms. In addition, the methodology is extended to include the contribution of a radiative flux (Rosseland diffusion approximation) and electronic and ionic conductivities (Spitzer-Härm diffusion approximation). Several numerical results are carried out to demonstrate the interest of the numerical approach.

MSC:

65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs
35Q35 PDEs in connection with fluid mechanics
82D10 Statistical mechanics of plasmas
76X05 Ionized gas flow in electromagnetic fields; plasmic flow
80A21 Radiative heat transfer

Software:

TRHD
Full Text: DOI

References:

[1] Decoster, A.: Fluids equations and transport coefficients of plasmas. Modeling of collisions, Series in applied Mathematics. ISBN: 2-84299-055-2 (1998)
[2] Enaux, C.: Personnal communication (2018)
[3] Evans, TM; Densmore, JD, Methods for coupling radiation, ion and electron energies in grey implicit Monte Carlo, J. Comput. Phys., 225, 1695-1720 (2007) · Zbl 1147.82354 · doi:10.1016/j.jcp.2007.02.020
[4] Fatenejad, M.; Fryxell, B.; Wohlbier, J.; Myra, E.; Lamb, D.; Fryer, C.; Graziani, C., Collaborative comparison of simulation codes for high-energy-density physics applications, High Energy Density Phys., 9, 63-66 (2013) · doi:10.1016/j.hedp.2012.10.004
[5] Feng, T.; An, H.; Yu, X.; Li, Q.; Zhang, R., On linearization and preconditioning for radiation diffusion coupled to material thermal conduction equations, J. Comput. Phys., 236, 28-40 (2013) · Zbl 1286.65114 · doi:10.1016/j.jcp.2012.11.012
[6] Fleck, JA; Cummings, JD, An implicit Monte Carlo scheme for calculating time and frequency dependent nonlinear radiation transport, J. Comput. Phys., 8, 3, 313-342 (1971) · Zbl 0229.65087 · doi:10.1016/0021-9991(71)90015-5
[7] Fraley, GS; Linnebur, EJ; Mason, RJ; Morse, RL, Thermonuclear burn characteristic of compressed deuterium-tritium microspheres, Phys. Fluids, 17, 2, 474-489 (1974) · doi:10.1063/1.1694739
[8] Knoll, DA; Lowrie, RB; Morel, JE, Numerical analysis of time integration errors for nonequilibrium radiation diffusion, J. Comput. Phys., 226, 1332-1347 (2007) · Zbl 1126.78007 · doi:10.1016/j.jcp.2007.05.034
[9] Larsen, EW; Mercier, B., Analysis of a Monte Carlo method for nonlinear radiative transfer, J. Comput. Phys., 71, 50-64 (1987) · Zbl 0628.65128 · doi:10.1016/0021-9991(87)90019-2
[10] Matteo, TD; Blackman, E.; Fabian, A., Two temperature coronae in active galactic nuclei, Mon. Not. R. Astron. Soc., 291, L23-L27 (1997) · doi:10.1093/mnras/291.1.L23
[11] Mihalas, D.; Mihalas, B., Foundations of Radiation Hydrodynamics (1984), Oxford: Oxford University Press, Oxford · Zbl 0651.76005
[12] Mousseau, VA; Knoll, DA, New physical-based preconditioning of implicit methods for non-equilibrium radiation diffusion, J. Comput. Phys., 190, 42-51 (2003) · Zbl 1027.65129 · doi:10.1016/S0021-9991(03)00252-3
[13] Sijoy, CD; Chaturvedi, S., TRHD: three-temeprature radiation-hydrodynamics code with an implicit non-equilibrium radiation transport using a cell-centered monotonic finite volume scheme on unstructured-grids, Comput. Phys. Commun., 190, 98-119 (2015) · Zbl 1344.76057 · doi:10.1016/j.cpc.2015.01.019
[14] Spitzer, L.; Härm, R., Transport phenomena in a completely ionized gas, Phys. Rev., 89, 977-981 (1953) · Zbl 0050.23505 · doi:10.1103/PhysRev.89.977
[15] Urbatsch, T.J., Evans, T.M.: Milagro Version 2. An implicit Monte Carlo code for thermal radiative transfer: capabilities, development, and usage. LA-14195-MS (2006)
[16] Wollaber, AB; Larsen, EW; Densmore, JD, A discrete maximum principle for the implicit Monte Carlo equations, Nucl. Sci. Eng., 173, 259-275 (2013) · doi:10.13182/NSE11-101
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.