×

A posteriori limiting for 2D Lagrange plus remap schemes solving the hydrodynamics system of equations. (English) Zbl 1410.76208

Summary: In this article, we show the gain in accuracy and robustness brought by the use of an a posteriori MOOD limiting in replacement of the classical slope limiter employed in the remap phase of a legacy second-order Lagrange+Remap scheme solving the Euler system of equations. This simple substitution ensures extended robustness property, better accuracy and ability to capture physical phenomena. Numerical tests in 2D assess those improvements and the relative low cost of this a posteriori approach by reporting the number of troubled cells which demand re-computation. Situations like the occurrence of not-a-number, negative density and spurious numerical oscillations can therefore be cured.

MSC:

76M12 Finite volume methods applied to problems in fluid mechanics
65M08 Finite volume methods for initial value and initial-boundary value problems involving PDEs

Software:

KRAKEN; MOOD
Full Text: DOI

References:

[1] Benson, D. J., Computational methods in Lagrangian and Eulerian hydrocodes, Comput Methods Appl Mech Eng, 99, 2, 235-394, (1992) · Zbl 0763.73052
[2] Blanchard, G.; Loubére, R., High order accurate conservative remapping scheme on polygonal meshes using a posteriori {MOOD} limiting, Comput Fluids, 136, 83-103, (2016) · Zbl 1390.65101
[3] Boscheri, W.; Loubère, R., High order accurate direct arbitrary-Lagrangian-Eulerian ader-mood finite volume schemes for non-conservative hyperbolic systems with stiff source terms, Commun Comput Phys, 21, 1, 271-312, (2017) · Zbl 1388.65076
[4] Boscheri, W.; Loubère, R.; Dumbser, M., Direct arbitrary-Lagrangian-Eulerian ader-mood finite volume schemes for multidimensional hyperbolic conservation laws, J Comput Physics, 56-87, (2015) · Zbl 1349.76312
[5] Caramana, E. J.; Burton, D. E.; Shashkov, M. J.; Whalen, P. P., The construction of compatible hydrodynamics algorithms utilizing conservation of total energy, J Comput Phys, 146, 1, 227-262, (1998) · Zbl 0931.76080
[6] Clain, S.; Diot, S.; Loubère, R., A high-order finite volume method for systems of conservation laws multi-dimensional optimal order detection (MOOD), J Comput Phys, 230, 10, 4028-4050, (2011) · Zbl 1218.65091
[7] DeBar, R. B., Fundamentals of the kraken code, Tech. Rep., (1974), Lawrence Livermore Laboratory
[8] Després, B.; Mazeran, C., Lagrangian gas dynamics in two dimensions and Lagrangian systems, Arch Rational Mech Anal, 178, 327-372, (2005) · Zbl 1096.76046
[9] Diot, S.; Clain, S.; Loubère, R., Improved detection criteria for the multi-dimensional optimal order detection (MOOD) on unstructured meshes with very high-order polynomials, Comput Fluids, 64, 43-63, (2012) · Zbl 1365.76149
[10] Diot, S.; Loubère, R.; Clain, S., The MOOD method in the three-dimensional case: very-high-order finite volume method for hyperbolic systems, Int J Numer Methods Fluids, 73, 362-392, (2013) · Zbl 1455.65147
[11] Dumbser, M.; Zanotti, O.; Loubère, R.; Diot, S., A posteriori subcell limiting of the discontinuous Galerkin finite element method for hyperbolic conservation laws, J Comput Phys, 278, 47-75, (2014) · Zbl 1349.65448
[12] Dumbser, M.; Loubére, R., A simple robust and accurate a posteriori sub-cell finite volume limiter for the discontinuous Galerkin method on unstructured meshes, J Comput Phys, 319, 163-199, (2016) · Zbl 1349.65447
[13] Hirt, C. W.; Amsden, A. A.; Cook, J. L., An arbitrary Lagrangian-Eulerian computing method for all flow speeds, J Comput Phys, 14, 227-253, (1974) · Zbl 0292.76018
[14] Loubère, R.; Dumbser, M.; Diot, S., A new family of high order unstructured MOOD and ADER finite volume schemes for multidimensional systems of hyperbolic conservation laws, Commun Comput Phys, 16, 718-763, (2014) · Zbl 1373.76137
[15] Loubére, R.; Maire, P.-H.; Rebourcet, B., Chapter 13 - staggered and colocated finite volume schemes for Lagrangian hydrodynamics, (Abgrall, R.; Shu, C.-W., Handbook of numerical methods for hyperbolic problemsbasic and fundamental issues, Handbook of Numerical Analysis, 17, (2016), Elsevier), 319-352 · Zbl 1352.65001
[16] Maire, P.; Abgrall, R.; Breil, J.; Ovadia, J., A cell-centered Lagrangian scheme for two-dimensional compressible flow problems, SIAM J Scient Comput, 29, 1781-1824, (2007) · Zbl 1251.76028
[17] Margolin, L.; Shashkov, M., Second-order sign-preserving conservative interpolation (remapping) on general grids, J Comput Phys, 184, 1, 266-298, (2003) · Zbl 1016.65004
[18] Neumann, J. V.; Richtmyer, R. D., A method for the numerical calculation of hydrodynamic shocks, J Appl Phys, 21, 232-237, (1950) · Zbl 0037.12002
[19] Nogueira, X.; Ramírez, L.; Clain, S.; Loubére, R.; Cueto-Felgueroso, L.; Colominas, I., High-accurate {SPH} method with multidimensional optimal order detection limiting, Comput Methods Appl Mech Eng, 310, 134-155, (2016) · Zbl 1439.76129
[20] Pember, R.; Anderson, R., Comparison of direct Eulerian Godunov and Lagrange plus remap artificial viscosity schemes, AIAA 2001-2644, (2001), 15th AIAA Computational Fluid Dynamics Conference Anaheim, CA, U.S.A
[21] R. D.Richtmyer, Proposed numerical method for calculation of shocks, Tech. Rep, (1948), Los Alamos National Laboratory, LA-671
[22] Richtmyer, R. D., Difference methods for initial value problems, (1957), Interscience Publishers · Zbl 0079.33702
[23] Liska, R.; Wendroff, B., Comparison of several difference schemes on 1d and 2d test problems for the Euler equations, SIAM J Sci Comput, 25, 2, 995-1017, (2003) · Zbl 1096.65089
[24] Loubère, R.; Shashkov, M. J., A subcell remapping method on staggered polygonal grids for arbitrary-Lagrangian-Eulerian methods, J Comput Phys, 209, 105-138, (2005) · Zbl 1329.76236
[25] Sedov. LI. Similarity and dimensional methods in mechanics.New York: Academic Press.; Sedov. LI. Similarity and dimensional methods in mechanics.New York: Academic Press. · Zbl 0672.76001
[26] Sutcliffe, W. G., Bbc hydrodynamics, Tech. Rep, (1974), Lawrence Livermore Laboratory
[27] Trulio, J. G.; Trigger, K. R., Numerical solution of the one dimensional Lagrangian hydrodynamics equations, Tech. Rep., (1961), Lawrence Radiation Laboratory
[28] van Leer, B., Towards the ultimate conservative difference scheme iii. upstream-centered finite-difference schemes for ideal compressible flow, J Comput Phys, 23, 263-275, (1977) · Zbl 0339.76039
[29] van Leer, B., Towards the ultimate conservative difference scheme, J Comput Phys, 32, 101-136, (1979) · Zbl 1364.65223
[30] Desveaux, V.; Berthon, C., An entropic mood scheme for the Euler equations, Int J Finite Volum, 11, 1-39, (2014) · Zbl 1490.65164
[31] Waltz, J., Operator splitting and time accuracy in Lagrange plus remap solution methods, J Comput Phys, 253, 247-258, (2013) · Zbl 1349.65176
[32] Woodward, P.; Colella, P., The numerical simulation of two-dimensional fluid flow with strong shocks, J Comput Phys, 54, 115-173, (1984) · Zbl 0573.76057
[33] Youngs, D., Implicit large eddy simulation: computing turbulent fluid dynamics, (2010), Cambridge University Press
[34] Youngs, D., Time dependent multi-material flow with large fluid distortion, (K. W. Morton, M. B.E., Numerical methods for fluid dynamics, (1982), Academic Press, New York), 274-285 · Zbl 0537.76071
[35] Zanotti, O.; Fambri, F.; Dumbser, M., Solving the relativistic magnetohydrodynamics equations with ADER discontinuous Galerkin methods, a posteriori subcell limiting and adaptive mesh refinement, Mon Not R Astron Soc (MNRAS), 452, 3010-3029, (2015)
[36] Zanotti, O.; Fambri, F.; Dumbser, M.; Hidalgo, A., Space-time adaptive ADER discontinuous Galerkin finite element schemes with a posteriori subcell finite volume limiting, Comput Fluids, 118, 204-224, (2015) · Zbl 1390.76381
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.