×

Tingley’s problem through the facial structure of operator algebras. (English) Zbl 1411.46007

Tingley’s problem asks whether every onto isometry between unit spheres of Banach spaces can be extended to an isometry between the whole spaces. In this paper, positive answers are given for the cases when both spaces are preduals of von Neumann algebras, the spaces of self-adjoint operators in von Neumann algebras, or the spaces of self-adjoint normal functionals on von Neumann algebras. The techniques to get the results include the study of the facial structure of operator algebras.
More information on Tingley’s problem can be found in [D. Tingley, Geom. Dedicata 22, 371–378 (1987; Zbl 0615.51005)], the surveys [G.-G. Ding, Sci. China, Ser. A 52, No. 10, 2069–2083 (2009; Zbl 1190.46013)] and [X.-Z. Yang and X.-P. Zhao, in: Mathematics without boundaries. Surveys in pure mathematics. New York, NY: Springer. 725–748 (2014; Zbl 1328.46012)]. For more results on Tingley’s problem for operator algebras, we refer to the recent survey paper [A. M. Peralta, Acta Sci. Math. 84, No. 1–2, 81–123 (2018; Zbl 1413.47065)] and references therein.

MSC:

46B04 Isometric theory of Banach spaces
46B20 Geometry and structure of normed linear spaces
46H35 Topological algebras of operators
46L10 General theory of von Neumann algebras
47C15 Linear operators in \(C^*\)- or von Neumann algebras

References:

[1] Akemann, C. A.; Pedersen, G. K., Facial structure in operator algebra theory, Proc. Lond. Math. Soc. (3), 64, 2, 418-448, (1992) · Zbl 0759.46050
[2] Cheng, L.; Dong, Y., On a generalized Mazur-Ulam question: extension of isometries between unit spheres of Banach spaces, J. Math. Anal. Appl., 377, 2, 464-470, (2011) · Zbl 1220.46006
[3] Ding, G., On isometric extension problem between two unit spheres, Sci. China Ser. A, 52, 10, 2069-2083, (2009) · Zbl 1190.46013
[4] Dye, H. A., On the geometry of projections in certain operator algebras, Ann. of Math. (2), 61, 73-89, (1955) · Zbl 0064.11002
[5] Edwards, C. M.; Rüttimann, G. T., On the facial structure of the unit balls in a \(\operatorname{JBW}^\ast\)-triple and its predual, J. Lond. Math. Soc. (2), 38, 2, 317-332, (1988) · Zbl 0621.46043
[6] Fernández-Polo, F. J.; Garcés, J. J.; Peralta, A. M.; Villanueva, I., Tingley’s problem for spaces of trace class operators, Linear Algebra Appl., 529, 294-323, (2017) · Zbl 1388.46013
[7] Fernández-Polo, F. J.; Martínez, J.; Peralta, A. M., Surjective isometries between real JB^{⁎}-triples, Math. Proc. Cambridge Philos. Soc., 137, 3, 703-723, (2004) · Zbl 1070.46037
[8] Fernández-Polo, F. J.; Peralta, A. M., On the extension of isometries between the unit spheres of von Neumann algebras, J. Math. Anal. Appl., 466, 1, 127-143, (2018) · Zbl 1403.46009
[9] Hatori, O.; Molnár, L., Isometries of the unitary groups and Thompson isometries of the spaces of invertible positive elements in \(C^\ast\)-algebras, J. Math. Anal. Appl., 409, 1, 158-167, (2014) · Zbl 1306.46053
[10] Kadison, R. V., Isometries of operator algebras, Ann. of Math. (2), 54, 325-338, (1951) · Zbl 0045.06201
[11] Kadison, R. V., A generalized Schwarz inequality and algebraic invariants for operator algebras, Ann. of Math. (2), 56, 494-503, (1952) · Zbl 0047.35703
[12] Kadison, R. V., Transformations of states in operator theory and dynamics, Topology, 3, Suppl. 2, 177-198, (1965) · Zbl 0129.08705
[13] Kadison, R. V.; Ringrose, J. R., Fundamentals of the theory of operator algebras. vol. II, Pure and Applied Mathematics, vol. 100, (1986), Academic Press, Inc. Orlando, FL · Zbl 0601.46054
[14] Leung, C.-W.; Ng, C.-K.; Wong, N.-C., The positive contractive part of a noncommutative \(L^p\)-space is a complete Jordan invariant, Linear Algebra Appl., 519, 102-110, (2017) · Zbl 1368.46050
[15] Mankiewicz, P., On extension of isometries in normed linear spaces, Bull. Acad. Pol. Sci., Sér. Sci. Math. Astron. Phys., 20, 367-371, (1972) · Zbl 0234.46019
[16] Molnár, L.; Timmermann, W., Isometries of quantum states, J. Phys. A, 36, 1, 267-273, (2003) · Zbl 1047.81017
[17] Mori, M.; Ozawa, N., Mankiewicz’s theorem and the Mazur-Ulam property for \(\operatorname{C}^\ast\)-algebras, preprint
[18] Peralta, A. M., A survey on Tingley’s problem for operator algebras, Acta Sci. Math. (Szeged), 84, 1-2, 81-123, (2018) · Zbl 1413.47065
[19] Pisier, G.; Xu, Q., Non-commutative \(L^p\)-spaces, (Handbook of the Geometry of Banach Spaces, vol. 2, (2003), North-Holland Amsterdam), 1459-1517 · Zbl 1046.46048
[20] Sherman, D., Noncommutative \(L^p\) structure encodes exactly Jordan structure, J. Funct. Anal., 221, 1, 150-166, (2005) · Zbl 1084.46050
[21] Tanaka, R., A further property of spherical isometries, Bull. Aust. Math. Soc., 90, 2, 304-310, (2014) · Zbl 1312.46021
[22] Tanaka, R., The solution of Tingley’s problem for the operator norm unit sphere of complex \(n \times n\) matrices, Linear Algebra Appl., 494, 274-285, (2016) · Zbl 1382.15034
[23] Tanaka, R., Tingley’s problem on finite von Neumann algebras, J. Math. Anal. Appl., 451, 1, 319-326, (2017) · Zbl 1371.46009
[24] Tingley, D., Isometries of the unit sphere, Geom. Dedicata, 22, 3, 371-378, (1987) · Zbl 0615.51005
[25] Vogt, A., Maps which preserve equality of distance, Studia Math., 45, 43-48, (1973) · Zbl 0222.46015
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.