×

Cohn-Leavitt path algebras of bi-separated graphs. (English) Zbl 1481.16034

An effort to combine results from \(C^*\)-algebra on Cuntz and graph operator algebras and ones of Leavitt on module types led both \(C^*\)-algebraists and ring theorists to several generalizations of path algebras by enriching ordinary directed graphs with additional structures. This long article surveys first these notions and then put them in the common frame work by a concept of bi-separated (directed) graphs. Although bi-separated graphs seem highly technical in nature, they become probably a right notion in dealing with existing generalizations of Cohn-Leavitt path algebras. Several basic, elementary properties of Cohn-Leavitt path algebras are obtained, including also a close relation between categories of bi-separated graphs and associated Cohn-Leavitt path algebras, respectively. The article could be in the interest of experts working on Leavitt path algebras.

MSC:

16S88 Leavitt path algebras
16S10 Associative rings determined by universal properties (free algebras, coproducts, adjunction of inverses, etc.)
16W10 Rings with involution; Lie, Jordan and other nonassociative structures
16W50 Graded rings and modules (associative rings and algebras)
16P70 Chain conditions on other classes of submodules, ideals, subrings, etc.; coherence (associative rings and algebras)
16P90 Growth rate, Gelfand-Kirillov dimension

References:

[1] Abrams, G.; Ánh, P. N.; Louly, A.; Pardo, E., The classification question for Leavitt path algebras, J. Algebra, 320, 5, 1983-2026 (2008) · Zbl 1205.16013 · doi:10.1016/j.jalgebra.2008.05.020
[2] Abrams, G.; Ara, P.; Molina, M. S., Leavitt Path Algebras. Lecture Notes in Mathematics, 2191 (2017), London: Springer, London · Zbl 1393.16001
[3] Abrams, G.; Mantese, F.; Tonolo, A., Leavitt path algebras are Bézout, Isr. J. Math, 228, 1, 53-78 (2018) · Zbl 1436.16036 · doi:10.1007/s11856-018-1773-2
[4] Abrams, G.; Pino, G. A., Purely infinite simple Leavitt path algebras, J. Pure Appl. Algebra, 207, 3, 553-563 (2006) · Zbl 1137.16028 · doi:10.1016/j.jpaa.2005.10.010
[5] Abrams, G.; Pino, G., The Leavitt path algebra of a graph, J. Algebra, 293, 2, 319-334 (2005) · Zbl 1119.16011 · doi:10.1016/j.jalgebra.2005.07.028
[6] Abrams, G.; Pino, G., The Leavitt path algebras of arbitrary graphs, Houston J. Math, 34, 2, 423-442 (2008) · Zbl 1169.16007
[7] Abrams, G.; Pino, G.; Molina, M., Finite-dimensional Leavitt path algebras, J. Pure Appl. Algebra, 209, 3, 753-762 (2007) · Zbl 1128.16008 · doi:10.1016/j.jpaa.2006.07.013
[8] Abrams, G.; Pino, G. A.; Molina, M. S., Locally finite Leavitt path algebras, Isr. J. Math, 165, 1, 329-348 (2008) · Zbl 1169.16008 · doi:10.1007/s11856-008-1014-1
[9] Abrams, G.; Pino, G. A.; Perera, F.; Molina, M. S., Chain conditions for Leavitt path algebras, Forum Math, 22, 1, 95-114 (2010) · Zbl 1194.16011
[10] Ara, P.; Goodearl, K. R., Leavitt path algebras of separated graphs, J. Reine Angew. Math, 669, 165-224 (2012) · Zbl 1281.46050
[11] Ara, P.; Moreno, M. A.; Pardo, E., Nonstable K-theory for graph algebras, Algebr. Represent. Theor., 10, 2, 157-178 (2007) · Zbl 1123.16006 · doi:10.1007/s10468-006-9044-z
[12] Bergman, G. M., Coproducts and some universal ring constructions, Trans. Am. Math. Soc, 200, 33-88 (1974) · Zbl 0264.16018 · doi:10.1090/S0002-9947-1974-0357503-7
[13] Bergman, G. M., The diamond lemma for ring theory, Adv. Math, 29, 2, 178-218 (1978) · Zbl 0326.16019 · doi:10.1016/0001-8708(78)90010-5
[14] Brown, L. G., Ext of certain free product C*-algebras, J. Operator Theory, 6, 1, 135-141 (1981) · Zbl 0501.46063
[15] Cohn, P. M., Some remarks on the invariant basis property, Topology, 5, 3, 215-228 (1966) · Zbl 0147.28802 · doi:10.1016/0040-9383(66)90006-1
[16] Cuntz, J., K-theory for certain C*-algebras, Ann. Math, 113, 1, 181-197 (1981) · Zbl 0437.46060 · doi:10.2307/1971137
[17] Cuntz, J., Simple C*-algebras generated by isometries, Communmath. Phys., 57, 2, 173-185 (1977) · Zbl 0399.46045 · doi:10.1007/BF01625776
[18] Cuntz, J.; Krieger, W., A class of C*-algebras and topological Markov chains, Invent. Math., 56, 3, 251-268 (1980) · Zbl 0434.46045 · doi:10.1007/BF01390048
[19] Hazrat, R., The graded structure of Leavitt path algebras, Isr. J. Math, 195, 2, 833-895 (2013) · Zbl 1308.16005 · doi:10.1007/s11856-012-0138-5
[20] Hazrat, R.; Preusser, R., Applications of normal forms for weighted Leavitt path algebras: simple rings and domains, Algebra Represent. Theor., 20, 5, 1061-1083 (2017) · Zbl 1376.16026 · doi:10.1007/s10468-017-9674-3
[21] Krause, G. R.; Lenagan, T. H., Growth of Algebras and Gelfand-Kirillov Dimension, 22 (2000), Providence, RI: American Mathematical Society, Providence, RI · Zbl 0957.16001
[22] Kumjian, A.; Pask, D.; Raeburn, I., Cuntz-Krieger algebras of directed graphs, Pacific J. Math, 184, 1, 161-174 (1998) · Zbl 0917.46056 · doi:10.2140/pjm.1998.184.161
[23] Leavitt, W. G., Modules over rings of words, Proc. Am. Math. Soc, 7, 2, 188-193 (1956) · Zbl 0073.02401 · doi:10.1090/S0002-9939-1956-0077520-9
[24] Leavitt, W. G., Modules without invariant basis number, Proc. Am. Math. Soc, 8, 2, 322-328 (1957) · Zbl 0073.02402 · doi:10.1090/S0002-9939-1957-0083986-1
[25] Leavitt, W. G., The module type of a ring, Trans. Am. Math. Soc, 103, 1, 113-130 (1962) · Zbl 0112.02701 · doi:10.1090/S0002-9947-1962-0132764-X
[26] Leavitt, W. G., The module type of homomorphic images, Duke Math. J, 32, 2, 305-311 (1965) · Zbl 0158.28801 · doi:10.1215/S0012-7094-65-03231-X
[27] McClanahan, K., C*-algebras generated by elements of a unitary matrix, J. Funct. Anal, 107, 2, 439-457 (1992) · Zbl 0777.46033 · doi:10.1016/0022-1236(92)90117-2
[28] McClanahan, K., K-theory and Ext-theory for rectangular unitary C*-algebras, Rocky Mt. J. Math, 23, 3, 1063-1080 (1993) · Zbl 0797.46047 · doi:10.1216/rmjm/1181072541
[29] Moreno-Fernández, J. M.; Molina, M. S., Graph algebras and the Gelfand-Kirillov dimension, J. Algebra Appl, 17, 5, 1850095-1850015 (2018) · Zbl 1410.16027 · doi:10.1142/S0219498818500950
[30] Preusser, R., Leavitt path algebras of hypergraphs, Bull. Braz. Math. Soc, New Ser, 51, 1, 185-137 (2020) · Zbl 1445.16029 · doi:10.1007/s00574-019-00150-3
[31] Preusser, R. (2018). Locally finite weighted Leavitt path algebras. arXiv Preprint arXiv 1806.06139.
[32] Preusser, R., The Gelfand-Kirillov dimension of a weighted Leavitt path algebra, J. Algebra Appl, 19, 3, 2050059 (2020) · Zbl 1444.16041 · doi:10.1142/S0219498820500590
[33] Preusser, R., The v-monoid of a weighted Leavitt path algebra, Isr. J. Math, 234, 1, 125-147 (2019) · Zbl 1478.16017 · doi:10.1007/s11856-019-1915-1
[34] Preusser, R. (2019). Weighted Leavitt path algebras that are isomorphic to unweighted Leavitt path algebras. arXiv preprint arXiv 1907.02817.
[35] Tomforde, M., Uniqueness theorems and ideal structure for Leavitt path algebras, J. Algebra, 318, 1, 270-299 (2007) · Zbl 1132.46035 · doi:10.1016/j.jalgebra.2007.01.031
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.