×

Optimal placement of sensor and actuator for controlling low-dimensional chaotic systems based on Global modeling. (English) Zbl 07880582


MSC:

37-XX Dynamical systems and ergodic theory
34-XX Ordinary differential equations
Full Text: DOI

References:

[1] Lin, C.-T., Structural controllability, IEEE Trans. Autom. Control, 19, 201-208, 1974 · Zbl 0282.93011 · doi:10.1109/TAC.1974.1100557
[2] Kalman, R., On the general theory of control systems, IFAC Proc. Vol., 1, 491-502, 1960 · doi:10.1016/S1474-6670(17)70094-8
[3] Fliess, M.; Lévine, J. L.; Martin, P.; Rouchon, P., Flatness and defect of non-linear systems: Introductory theory and examples, Int. J. Control, 61, 1327-1361, 1995 · Zbl 0838.93022 · doi:10.1080/00207179508921959
[4] Franklin, G.; Powell, J.; Emami-Naeini, A., Feedback Control of Dynamic Systems, 2015, Pearson
[5] Khalil, H. K., Nonlinear Systems, 2002, Pearson · Zbl 1003.34002
[6] Isidori, A., Nonlinear Control Systems, 1995, Springer · Zbl 0569.93034
[7] Sontag, E. D., Mathematical Control Theory: Deterministic Finite Dimensional Systems, 1998, Springer: Springer, New York · Zbl 0945.93001
[8] Ortega, R., Passivity properties for stabilization of cascaded nonlinear systems, Automatica, 27, 423-424, 1991 · Zbl 0729.93065 · doi:10.1016/0005-1098(91)90094-I
[9] Jiang, Z.-P.; Praly, L., Design of robust adaptive controllers for nonlinear systems with dynamic uncertainties, Automatica, 34, 825-840, 1998 · Zbl 0951.93042 · doi:10.1016/S0005-1098(98)00018-1
[10] Utkin, V., Sliding Modes in Control and Optimization, Communications and Control Engineering (Springer-Verlag, Berlin, 1992). · Zbl 0748.93044
[11] Aguirre, L. A.; Letellier, C., Modeling nonlinear dynamics and chaos: A review, Math. Probl. Eng., 2009, 238960, 2009 · Zbl 1180.37003 · doi:10.1155/2009/238960
[12] Billings, S.; Leontaritis, I. J., Parameter estimation techniques for nonlinear systems, IFAC Proc. Vol., 15, 505-510, 1982 · doi:10.1016/S1474-6670(17)63039-8
[13] Crutchfield, J. P.; McNamara, B. S., Equations of motion from a data series, Complex Syst., 1, 417-452, 1987 · Zbl 0675.58026
[14] Cremers, J.; Hübler, A., Construction of differential equations from experimental data, Z. Naturforsch. A, 42, 797-802, 1987 · doi:10.1515/zna-1987-0805
[15] Gouesbet, G.; Letellier, C., Global vector-field reconstruction by using a multivariate polynomial \(\operatorname{L}_2\) approximation on nets, Phys. Rev. E, 49, 4955-4972, 1994 · doi:10.1103/PhysRevE.49.4955
[16] Mangiarotti, S.; Coudret, R.; Drapeau, L.; Jarlan, L., Polynomial search and global modeling: Two algorithms for modeling chaos, Phys. Rev. E, 86, 046205, 2012 · doi:10.1103/PhysRevE.86.046205
[17] Mangiarotti, S.; Huc, M., Can the original equations of a dynamical system be retrieved from observational time series?, Chaos, 29, 023133, 2019 · Zbl 1409.37080 · doi:10.1063/1.5081448
[18] Rico-Martínez, R.; Krischer, K.; Kevrekidis, I. G.; Kube, M. C.; Hudson, J. L., Discrete-vs continuous time nonlinear signal processing of Cu electrodissolution data, Chem. Eng. Commun., 118, 25-48, 1992 · doi:10.1080/00986449208936084
[19] Letellier, C.; Sceller, L. L.; Dutertre, P.; Gouesbet, G.; Fei, Z.; Hudson, J. L., Topological characterization and global vector field reconstruction from an experimental electrochemical system, J. Phys. Chem., 99, 7016-7027, 1995 · doi:10.1021/j100018a039
[20] Letellier, C.; Maquet, J.; Labro, H.; Sceller, L. L.; Gouesbet, G.; Argoul, F.; Arnéodo, A., Analyzing chaotic behaviour in a Belousov-Zhabotinskii reaction by using a global vector field reconstruction, J. Phys. Chem. A, 102, 10265-10273, 1998 · doi:10.1021/jp982219u
[21] Letellier, C.; Sceller, L. L.; Gouesbet, G.; Lusseyran, F.; Kemoun, A.; Izrar, B., Recovering deterministic behavior from experimental time series in mixing reactor, AIChE J., 43, 2194-2202, 1997 · doi:10.1002/aic.690430906
[22] Brown, R.; Rulkov, N. F.; Tracy, E. R., Modeling and synchronizing chaotic systems from experimental data, Phys. Lett. A, 194, 71-76, 1994 · doi:10.1016/0375-9601(94)00708-W
[23] Maquet, J.; Letellier, C.; Aguirre, L. A., Global models from the Canadian lynx cycles as a first evidence for chaos in real ecosystems, J. Math. Biol., 55, 21-39, 2007 · Zbl 1145.92036 · doi:10.1007/s00285-007-0075-9
[24] Aguirre, L. A.; Letellier, C.; Maquet, J., Forecasting the time series of sunspot numbers, Sol. Phys., 249, 103-120, 2008 · doi:10.1007/s11207-008-9160-5
[25] Mangiarotti, S.; Drapeau, L.; Letellier, C., Two chaotic global models for cereal crops cycles observed from satellite in northern Morocco, Chaos, 24, 023130, 2014 · Zbl 1345.37091 · doi:10.1063/1.4882376
[26] Mangiarotti, S.; Peyre, M.; Huc, M., A chaotic model for the epidemic of Ebola virus disease in West Africa (2013-2016), Chaos, 26, 113112, 2016 · Zbl 1378.92073 · doi:10.1063/1.4967730
[27] Letellier, C.; Abraham, R.; Shepelyansky, D. L.; össler, O. E.; Holmes, P.; Lozi, R.; Glass, L.; Pikovsky, A.; Olsen, L. F.; Tsuda, I.; Grebogi, C.; Parlitz, U.; Gilmore, R.; Pecora, L. M.; Carroll, T. L., Some elements for a history of the dynamical systems theory, Chaos, 31, 053110, 2021 · Zbl 1462.37002 · doi:10.1063/5.0047851
[28] Letellier, C.; Dutertre, P.; Maheu, B., Unstable periodic orbits and templates of the Rössler system: Toward a systematic topological characterization, Chaos, 5, 271-282, 1995 · doi:10.1063/1.166076
[29] Carroll, T. L., A simple circuit for demonstrating regular and synchronized chaos, Am. J. Phys., 63, 377-379, 1995 · doi:10.1119/1.17923
[30] Letellier, C.; Barbot, J.-P., Flatness for an optimal control of chaotic systems using a minimal numbers of sensors and actuators, Chaos, 31, 103114, 2021 · Zbl 07867373 · doi:10.1063/5.0055895
[31] Letellier, C., Minati, L., and Barbot, J.-P., “Optimal placement of sensor and actuator for controlling the piecewise linear Chua circuit via a discretized controller,” J. Differ. Discrete Equ. (in press) (2022). · Zbl 1531.93028
[32] Hermann, R.; Krener, A., Nonlinear controllability and observability, IEEE Trans. Autom. Control, 22, 728-740, 1977 · Zbl 0396.93015 · doi:10.1109/TAC.1977.1101601
[33] Lobry, C., Contrôlabilité des systèmes non linéaires, SIAM J. Control Optim., 8, 573-605, 1970 · Zbl 0207.15201 · doi:10.1137/0308042
[34] Sussmann, H. J.; Jurdjevic, V., Controllability of nonlinear systems, J. Differ. Equ., 12, 95-116, 1972 · Zbl 0242.49040 · doi:10.1016/0022-0396(72)90007-1
[35] Jakubczyk, B.; Respondek, W., On linearization of control systems, Bull. Acad. Pol. Sér. Sci. Math., 28, 517-522, 1980 · Zbl 0489.93023
[36] Hunt, L.; Su, Renjeng; Meyer, G., Global transformations of nonlinear systems, IEEE Trans. Autom. Control, 28, 24-31, 1983 · Zbl 0502.93036 · doi:10.1109/TAC.1983.1103137
[37] Isidori, A.; Krener, A.; Gori-Giorgi, C.; Monaco, S., Nonlinear decoupling via feedback: A differential geometric approach, IEEE Trans. Autom. Control, 26, 331-345, 1981 · Zbl 0481.93037 · doi:10.1109/TAC.1981.1102604
[38] Pathak, J.; Lu, Z.; Hunt, B. R.; Girvan, M.; Ott, E., Using machine learning to replicate chaotic attractors and calculate Lyapunov exponents from data, Chaos, 27, 121102, 2017 · Zbl 1390.37138 · doi:10.1063/1.5010300
[39] Rajendra, P.; Brahmajirao, V., Modeling of dynamical systems through deep learning, Biophys. Rev., 12, 1311-1320, 2020 · doi:10.1007/s12551-020-00776-4
[40] Aguirre, L. A.; Freitas, U. S.; Letellier, C.; Sceller, L. L.; Maquet, J., State space parsimonious reconstruction of attractor produced by an electronic oscillator, AIP Conf. Proc., 502, 649-654, 2000 · Zbl 0987.37077 · doi:10.1063/1.1302447
[41] Aguirre, L. A., Some remarks on structure selection for nonlinear models, Int. J. Bifurcation Chaos, 04, 1707-1714, 1994 · Zbl 0875.93030 · doi:10.1142/S0218127494001325
[42] Lainscsek, C. S. M.; Letellier, C.; Schürrer, F., Ansatz library for global modeling with a structure selection, Phys. Rev. E, 64, 016206, 2001 · doi:10.1103/PhysRevE.64.016206
[43] Smirnov, D. A.; Bezruchko, B. P.; Seleznev, Y. P., Choice of dynamical variables for global reconstruction of model equations from time series, Phys. Rev. E, 65, 026205, 2002 · doi:10.1103/PhysRevE.65.026205
[44] Chen, S.; Billings, S. A.; Luo, W., Orthogonal least squares methods and their application to non-linear system identification, Int. J. Control, 50, 1873-1896, 1989 · Zbl 0686.93093 · doi:10.1080/00207178908953472
[45] Breeden, J. L.; Hübler, A., Reconstructing equations of motion from experimental data with unobserved variables, Phys. Rev. A, 42, 5817-5826, 1990 · doi:10.1103/PhysRevA.42.5817
[46] Giona, M.; Lentini, F.; Cimagalli, V., Functional reconstruction and local prediction of chaotic time series, Phys. Rev. A, 44, 3496-3502, 1991 · doi:10.1103/PhysRevA.44.3496
[47] Aguirre, L. A.; Billings, S. A., Retrieving dynamical invariants from chaotic data using NARMAX models, Int. J. Bifurcation Chaos, 5, 449-474, 1995 · Zbl 0886.58100 · doi:10.1142/S0218127495000363
[48] Judd, K.; Mees, A., Embedding as a modeling problem, Physica D, 120, 273-286, 1998 · Zbl 0965.37061 · doi:10.1016/S0167-2789(98)00089-X
[49] Letellier, C.; Ginoux, J.-M., Development of the nonlinear dynamical systems theory from radio-engineering to electronics, Int. J. Bifurcation Chaos, 19, 2131-2163, 2009 · Zbl 1176.34002 · doi:10.1142/S0218127409023986
[50] Letellier, C.; Aguirre, L. A., Investigating nonlinear dynamics from time series: The influence of symmetries and the choice of observables, Chaos, 12, 549-558, 2002 · Zbl 1080.37600 · doi:10.1063/1.1487570
[51] Letellier, C.; Aguirre, L.; Maquet, J., How the choice of the observable may influence the analysis of nonlinear dynamical systems, Commun. Nonlinear Sci. Numer. Simul., 11, 555-576, 2006 · Zbl 1099.37521 · doi:10.1016/j.cnsns.2005.01.003
[52] Letellier, C.; Aguirre, L. A.; Maquet, J., Relation between observability and differential embeddings for nonlinear dynamics, Phys. Rev. E, 71, 066213, 2005 · doi:10.1103/PhysRevE.71.066213
[53] Abarbanel, H. D. I.; Kennel, M. B., Local false nearest neighbors and dynamical dimensions from observed chaotic data, Phys. Rev. E, 47, 3057-3068, 1993 · doi:10.1103/PhysRevE.47.3057
[54] Cao, L., Practical method for determining the minimum embedding dimension of a scalar time series, Phys. D, 110, 43-50, 1997 · Zbl 0925.62385 · doi:10.1016/S0167-2789(97)00118-8
[55] See https://cran.r-project.org/web/packages/GPoM/index.html where all packages can be found.
[56] Letellier, C.
[57] Rössler, O. E., An equation for continuous chaos, Phys. Lett. A, 57, 397-398, 1976 · Zbl 1371.37062 · doi:10.1016/0375-9601(76)90101-8
[58] Brockett, R. W.; Byrnes, C. I., Multivariable Nyquist criteria, root loci, and pole placement: A geometric viewpoint, IEEE Trans. Autom. Control, 26, 271-284, 1981 · Zbl 0462.93026 · doi:10.1109/TAC.1981.1102571
[59] Letellier, C.; Mangiarotti, S.; Sendiña-Nadal, I.; Rössler, O. E., Topological characterization versus synchronization for assessing (or not) dynamical equivalence, Chaos, 28, 045107, 2018 · doi:10.1063/1.5011325
[60] Dorato, P., A historical review of robust control, IEEE Control Syst. Mag., 7, 44-47, 1987 · doi:10.1109/MCS.1987.1105273
[61] Matsumoto, T., A chaotic attractor from Chua’s circuit, IEEE Trans. Circuits Syst., CAS-31, 1055-1058, 1984 · Zbl 0551.94020 · doi:10.1109/TCS.1984.1085459
[62] Matsumoto, T.; Chua, L. O.; Komuro, M., The double scroll, IEEE Trans. Circuits Syst., CAS-32, 798-818, 1985 · Zbl 0578.94023 · doi:10.1109/TCS.1985.1085791
[63] Rosalie, M.; Letellier, C., Systematic template extraction from chaotic attractors: I. Genus-one attractors with an inversion symmetry, J. Phys. A, 46, 375101, 2013 · Zbl 1300.37026 · doi:10.1088/1751-8113/46/37/375101
[64] Ghrist, R. W.; Holmes, P. J., An ODE whose solutions contain all knots and links, Int. J. Bifurcations Chaos, 6, 779-800, 1996 · Zbl 0878.34038 · doi:10.1142/S0218127496000448
[65] Ghrist, R. W., Branched two-manifolds supporting all links, Topology, 36, 423-448, 1997 · Zbl 0869.57007 · doi:10.1016/0040-9383(96)00006-7
[66] Letellier, C.; Gilmore, R., The universal template is a subtemplate of the double-scroll template, J. Phys. A, 46, 065102, 2013 · Zbl 1273.37030 · doi:10.1088/1751-8113/46/6/065102
[67] Letellier, C.; Dutertre, P.; Reizner, J.; Gouesbet, G., Evolution of multimodal map induced by an equivariant vector field, J. Phys. A, 29, 5359-5373, 1996 · Zbl 0905.58044 · doi:10.1088/0305-4470/29/17/012
[68] Khitnik, A. I.; Rose, D.; Chua, L. O., On periodic orbits and homoclinic bifurcations in Chua’s circuit with a smooth non linearity, Int. J. Bifurcations Chaos, 3, 363-384, 1993 · Zbl 0870.58078 · doi:10.1142/S021812749300026X
[69] Lorenz, E. N., Deterministic nonperiodic flow, J. Atmos. Sci., 20, 130-141, 1963 · Zbl 1417.37129 · doi:10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2
[70] Letellier, C.; Gilmore, R., Covering dynamical systems: Two-fold covers, Phys. Rev. E, 63, 016206, 2001 · doi:10.1103/PhysRevE.63.016206
[71] Rosier, L., Homogeneous Lyapunov function for homogeneous continuous vector field, Syst. Control Lett., 19, 467-473, 1992 · Zbl 0762.34032 · doi:10.1016/0167-6911(92)90078-7
[72] Polyakov, A., On homogeneous controllability functions, Visnyk V. N. Karazin Kharkiv Nat. Univ. Ser. Math. Appl. Math. Mech., 94, 24-39, 2021 · Zbl 1499.93037 · doi:10.26565/2221-5646-2021-94-02
[73] Letellier, C.; Ringuet, E.; Maheu, B.; Maquet, J.; Gouesbet, G., Global vector field reconstruction of chaotic attractors from one unstable periodic orbit, Entropie, 202/203, 147-153, 1997
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.