×

Optimal placement of sensor and actuator for controlling the piecewise linear Chua circuit via a discretized controller. (English) Zbl 1531.93028

In this paper, the authors propose some recommendations for the placement of sensors and actuators based on structural analysis of the management system. Based on this analysis, it is proposed to develop a certain flat control law. Using this optimal placement, the authors pay particular attention to feedback linearization. The specificity of this work is related to the special case of piecewise linear systems, when the application of the plane control law is not so simple. The general results are illustrated by considering examples.

MSC:

93B05 Controllability
93B07 Observability
93C15 Control/observation systems governed by ordinary differential equations
Full Text: DOI

References:

[1] Adam, E. J.; Marchetti, J. L., Designing and tuning robust feedforward controllers, Comput. Chem. Eng., 28, 9, 1899-1911 (2004)
[2] Aguirre, L. A., Controllability and observability of linear systems: Some noninvariant aspects, IEEE. Trans. Educ., 38, 1, 33-39 (1995)
[3] Aguirre, L. A.; Portes, L. L.; Letellier, C., Structural, dynamical and symbolic observability: From dynamical systems to networks, PLoS. ONE., 13, 10, e0206180 (2018)
[4] Alvarez-Ramírez, J., Nonlinear feedback for controlling the Lorenz equation, Phys. Rev. E., 50, 3, 2339-2342 (1994)
[5] Angquist, L.; Antonopoulos, A.; Siemaszko, D.; Ilves, K.; Vasiladiotis, M.; Nee, H. P., Open-loop control of modular multilevel converters using estimation of stored energy, IEEE. Trans. Ind. Appl., 47, 6, 2516-2524 (2011)
[6] Barbot, J.P., Fliess, M., and Floquet, T., An algebraic framework for the design of nonlinear observers with unknown inputs, in 46th IEEE Conference on Decision and Control, 2007, pp. 384-389.
[7] Barbot, J. P.; Levant, A.; Livne, M.; Lunz, D., Discrete differentiators based on sliding modes, Automatica, 112 (2020) · Zbl 1430.93025
[8] Barone, K.; Singh, S. N., Adaptative feedback linearizing control of Chua’s circuit, Int. J. Bifurcat. Chaos., 12, 7, 1599-1604 (2002)
[9] Bhat, S. P.; Bernstein, D. S., Finite-time stability of continuous autonomous systems, SIAM. J. Control. Optim., 38, 3, 751-766 (2000) · Zbl 0945.34039
[10] Bianco-Martinez, E.; Baptista, M. S.; Letellier, C., Symbolic computations of nonlinear observability, Phys. Rev. E., 91, 6 (2015)
[11] Bilotta, E.; Pantano, P., A Gallery of Chua Attractors (2008), World Scientific Publishing · Zbl 1147.34036
[12] Boccaletti, S.; Grebogi, C.; Lai, Y. C.; Mancini, H.; Maza, D., The control of chaos: Theory and applications, Phys. Rep., 329, 3, 103-197 (2000)
[13] Bonilla Estrada, M.; Figueroa Garcia, M.; Malabre, M.; Martínez García, J. C., Left invertibility and duality for linear systems, Linear. Algebra. Appl., 425, 2-3, 345-373 (2007) · Zbl 1122.93035
[14] Bououden, S.; Boutat, D.; Zheng, G.; Barbot, J. P.; Kratz, F., A triangular canonical form for a class of 0-flat nonlinear systems, Int. J. Control., 84, 2, 261-269 (2011) · Zbl 1221.93038
[15] Braidiz, Y.; Efimov, D.; Polyakov, A.; Perruquetti, W., On robustness of finite-time stability of homogeneous affine nonlinear systems and cascade interconnections, Int. J. Control., 95, 3, 768-778 (2022) · Zbl 1485.93513
[16] Brdys, M. A.; Kulawski, G. J., Dynamic neural controllers for induction motor, IEEE. Trans. Neural. Netw., 10, 2, 340-355 (1999)
[17] Brockett, R. W.; Byrnes, C. I., Multivariable Nyquist criteria, root loci, and pole placement: A geometric viewpoint, IEEE. Trans. Automat. Contr., 26, 1, 271-284 (1981) · Zbl 0462.93026
[18] Brogliato, B. and Polyakov, A., Globally stable implicit Euler time-discretization of a nonlinear single-input sliding-mode control system, in 54th IEEE Conference on Decision and Control, IEEE, Osaka, Japan, 2015, pp. 5426-5431.
[19] Carroll, T. L., A simple circuit for demonstrating regular and synchronized chaos, Am. J. Phys., 63, 4, 377-379 (1995)
[20] Chen, G., Controlling Chua’s global unfolding circuit family, IEEE. Trans. Circuits. Syst. I., 40, 11, 829-832 (1993) · Zbl 0850.93355
[21] Chen, G.; Chen, X., Controlling Chua’s circuit, J. Circuits. Syst. Comput., 03, 1, 139-149 (1993)
[22] Chua, L., The genesis of Chua’s circuit, Arch. Electron. Transm. Technol., 46, 250-257 (1992)
[23] Chua, L. O., CNN: A Paradigm for Complexity (1998), World Scientific Publishing · Zbl 0916.68132
[24] Deregel, P., Chua’s oscillator: A zoo of attractors, J. Circuits. Syst. Comput., 03, 2, 309-359 (1993)
[25] Ditto, W. L.; Spano, M. L.; In, V.; Neff, J.; Meadows, B.; Langberg, J. J.; Bolmann, A.; McTeague, K., Control of human atrial fibrillation, Int. J. Bifurcat. Chaos., 10, 3, 593-601 (2000)
[26] Fliess, M.; Lévine, J. L.; Martin, P.; Rouchon, P., Flatness and defect of non-linear systems: Introductory theory and examples, Int. J. Control., 61, 6, 1327-1361 (1995) · Zbl 0838.93022
[27] Fortuna, L.; Frasca, M.; Xibilia, M. G., Chua’s Circuit Implementations (2009), World Scientific Publishing
[28] Frank, S. A., Control Theory Tutorial (2018), Springer · Zbl 1398.93002
[29] Franklin, G.; Powell, J.; Emami-Naeini, A., Feedback Control of Dynamic Systems (2015), Pearson
[30] Garfinkel, A.; Weiss, J. N.; Ditto, W. L.; Spano, M. L., Chaos control of cardiac arrhythmias, Trends. Cardiovasc. Med., 5, 2, 76-80 (1995)
[31] Gauthier, J.; Hammouri, H.; Othman, S., A simple observer for nonlinear systems applications to bioreactors, IEEE. Trans. Automat. Contr., 37, 6, 875-880 (1992) · Zbl 0775.93020
[32] Ghrist, R. W., Branched two-manifolds supporting all links, Topology, 36, 2, 423-448 (1997) · Zbl 0869.57007
[33] Ghrist, R. W.; Holmes, P. J., An ODE whose solutions contain all knots and links, Int. J. Bifurcat. Chaos., 06, 5, 779-800 (1996) · Zbl 0878.34038
[34] Guo, W.; Liu, D., Adaptive control of chaos in Chua’s circuit, Math. Probl. Eng., 2011 (2011) · Zbl 1213.93100
[35] Hartley, T. T.; Mossayebi, F., Control of Chua’s circuit, J. Circuits. Syst. Comput., 03, 1, 173-194 (1993)
[36] Hermann, R.; Krener, A., Nonlinear controllability and observability, IEEE. Trans. Automat. Contr., 22, 5, 728-740 (1977) · Zbl 0396.93015
[37] Hunt, L.; Su, Renjeng; Meyer, G., Global transformations of nonlinear systems, IEEE. Trans. Automat. Contr., 28, 1, 24-31 (1983) · Zbl 0502.93036
[38] Hwang, C. C.; Chow, H. Y.; Wang, Y. K., A new feedback control of a modified Chua’s circuit system, Phys. D., 92, 1-2, 95-100 (1996) · Zbl 0925.93366
[39] Isidori, A., Nonlinear Control Systems (1995), Springer · Zbl 0569.93034
[40] Isidori, A.; Krener, A.; Gori-Giorgi, C.; Monaco, S., Nonlinear decoupling via feedback: A differential geometric approach, IEEE. Trans. Automat. Contr., 26, 2, 331-345 (1981) · Zbl 0481.93037
[41] Isidori, A., Moog, C.H., and Luca, A.D., A sufficient condition for full linearization via dynamic state feedback, in 25th IEEE Conference on Decision and Control, 1986, pp. 203-208.
[42] Jakubczyk, B.; Respondek, W., On linearization of control systems, Bulletin. Polish. Acad. Math. Sci. Ser., 28, 517-522 (1980) · Zbl 0489.93023
[43] Johansson, M., Piecewise Linear Control Systems (2003), Springer: Springer, Berlin - Heidelberg · Zbl 1008.93002
[44] Kailath, T., Linear Systems (1980), Prentice-Hall · Zbl 0454.93001
[45] Kalman, R., On the general theory of control systems, in IFAC Proceedings Vol. 1, 1st International IFAC Congress on Automatic and Remote Control, Moscow, USSR, 1960, pp. 491-502.
[46] Letellier, C., Chaos in electronic circuits: Chua’s contribution (1980-2000), in Chaos, CNN, Memristors and beyond, A. Adamatzky and G. Chen, eds., World Scientific Publishing, 2013, pp. 211-235.
[47] Letellier, C.; Aguirre, L. A., Investigating nonlinear dynamics from time series: The influence of symmetries and the choice of observables, Chaos, 12, 3, 549-558 (2002) · Zbl 1080.37600
[48] Letellier, C.; Aguirre, L. A., Graphical interpretation of observability in terms of feedback circuits, Phys. Rev. E., 72, 5 (2005)
[49] Letellier, C.; Aguirre, L. A., Symbolic observability coefficients for univariate and multivariate analysis, Phys. Rev. E., 79, 6 (2009)
[50] Letellier, C.; Barbot, J. P., Flatness for an optimal control of chaotic systems using a minimal numbers of sensors and actuators, Chaos, 31 (2021) · Zbl 07867373
[51] Letellier, C.; Gilmore, R., The universal template is a subtemplate of the double-scroll template, J. Phys. A. Math. Theor., 46, 6 (2013) · Zbl 1273.37030
[52] Letellier, C.; Dutertre, P.; Maheu, B., Unstable periodic orbits and templates of the Rössler system: Toward a systematic topological characterization, Chaos, 5, 1, 271-282 (1995)
[53] Letellier, C.; Maquet, J.; Sceller, L. L.; Gouesbet, G.; Aguirre, L. A., On the non-equivalence of observables in phase-space reconstructions from recorded time series, J. Phys. A. Math. Gen., 31, 39, 7913-7927 (1998) · Zbl 0936.81014
[54] Letellier, C.; Sendiña-Nadal, I.; Aguirre, L. A., A nonlinear graph-based theory for dynamical network observability, Phys. Rev. E., 98, 2, 020303(R) (2018)
[55] Letellier, C.; Sendiña-Nadal, I.; Bianco-Martinez, E.; Baptista, M. S., A symbolic network-based nonlinear theory for dynamical systems observability, Sci. Rep., 8, 1, 3785 (2018)
[56] Levine, J., Analysis and Control of Nonlinear Systems. A Flatness-Based Approach (2009), Springer-Verlag: Springer-Verlag, Berlin-Heildeberg, Germany · Zbl 1167.93001
[57] Lin, C. T., Structural controllability, IEEE. Trans. Automat. Contr., 19, 3, 201-208 (1974) · Zbl 0282.93011
[58] Liu, Y. Y.; Slotine, J. J.; Barabási, A. L., Controllability of complex networks, Nature, 473, 7346, 167-173 (2011)
[59] Lobry, C., Contrôlabilité des systèmes non linéaires, SIAM. J. Contr. Optim., 8, 4, 573-605 (1970) · Zbl 0207.15201
[60] Madan, R. N., Chua’s Circuit: A Paradigm for Chaos (1993), World Scientific Publishing · Zbl 0861.58026
[61] Martin, P.; Murray, R. M.; Rouchon, P., Flat systems: Open problems, infinite dimensional extension, symmetries and catalog, Lect. Notes Control Inf. Sci., 264, 33-57 (2001) · Zbl 1008.93019
[62] Mason, S. J., Feedback theory – some properties of signal flow graphs, Proc. IRE., 41, 9, 1144-1156 (1953)
[63] Matsumoto, T., A chaotic attractor from Chua’s circuit, IEEE. Trans. Circuits. Syst. CAS., 31, 12, 1055-1058 (1984) · Zbl 0551.94020
[64] Matsumoto, T.; Chua, L. O.; Komuro, M., The double scroll, IEEE. Trans. Circuits. Syst. CAS., 32, 8, 797-818 (1985) · Zbl 0578.94023
[65] Mojallizadeh, M.R., Brogliato, B., Polyakov, A., Selvarajan, S., Michel, L., Plestan, F., Ghanes, M., Barbot, J.P., and Aoustin, Y., Discrete-time differentiators in closed-loop control systems: Experiments on electro-pneumatic system and rotary inverted pendulum, Research Rep. INRIA Grenoble, 2022. Available at https://hal.inria.fr/hal-03125960.
[66] Nadal, I. S.; Letellier, C., Observability analysis and state reconstruction for networks of nonlinear systems, Chaos, 32, 8 (2022) · Zbl 07876551
[67] Nicolau, F.; Respondek, W.; Barbot, J. P., Flat inputs: Theory and applications, SIAM. J. Contr. Optim., 58, 6, 3293-3321 (2020) · Zbl 1451.93057
[68] Nuzuri, A.; Suykens, J.; Chua, L., A CNN approach to brain-like chaos-periodicity transitions, Int. J. Bifurcat. Chaos., 08, 11, 2263-2278 (1998) · Zbl 0936.92008
[69] Ortega, R., Jiang, Z., and Hill, D., Passivity-based control of nonlinear systems: A tutorial, in Proceedings of the 1997 American Control Conference, Vol. 5, Albuquerque, New Mexico, 1997, pp. 2633-2637.
[70] Ott, E.; Grebogi, C.; Yorke, J. A., Controlling chaos, Phys. Rev. Lett., 64, 11, 1196-1199 (1990) · Zbl 0964.37501
[71] Reichhartinger, M., Koch, S., Niederwieser, H., and Spurgeon, S.K., The robust exact differentiator toolbox: Improved discrete-time realization, in 15th International Workshop on Variable Structure Systems, IEEE, 2018, pp. 1-6.
[72] Respondek, W., Right and left invertibility of nonlinear control systems, in NonLinear Controllability and Optimal Control, H.J. Sussmann, ed., Routledge, 1990, pp. 133-176. · Zbl 0719.93038
[73] Rosalie, M.; Letellier, C., Systematic template extraction from chaotic attractors: i. Genus-one attractors with an inversion symmetry, J. Phys. A. Math. Theor., 46, 37 (2013) · Zbl 1300.37026
[74] Saito, T.; Mitsubori, K., Control of chaos from a piecewise linear hysteresis circuit, IEEE. Trans. Circuits. Syst. I., 42, 3, 168-172 (1995) · Zbl 0846.93076
[75] Schenkendorf, R.; Mangold, M., Parameter identification for ordinary and delay differential equations by using flat inputs, Theor. Found. Chem. Eng., 48, 5, 594-607 (2014)
[76] Sira-Ramírez, H.; Agrawal, S., Differentially Flat Systems (2004), CRC Press · Zbl 1126.93003
[77] Sohanian Haghighi, H.; Markazi, A., A new description of epileptic seizures based on dynamic analysis of a thalamocortical model, Sci. Rep., 7, 1, 13615 (2017)
[78] Sussmann, H. J.; Jurdjevic, V., Controllability of nonlinear systems, J. Differ. Equ., 12, 1, 95-116 (1972) · Zbl 0242.49040
[79] Tsakalis, K., Chakravarthy, N., and Iasemidis, L., Control of epileptic seizures: Models of chaotic oscillator networks, in Proceedings of the 44th IEEE Conference on Decision and Control, 2005, pp. 2975-2981.
[80] Waldherr, S.; Zeitz, M., Conditions for the existence of a flat input, Int. J. Control., 81, 3, 439-443 (2008) · Zbl 1152.93335
[81] Yu, Z. and Zhao, J.Dynamic behaviors in two novel autonomous circuits with a physical negative resistor characterized by nonsymmetric function, in 1992 IEEE International Symposium on Circuits and Systems (ISCAS), Vol. 6, 1992, pp. 2813-2816.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.