×

Event-based secure \(\mathcal{H}_\infty\) load frequency control for delayed power systems subject to deception attacks. (English) Zbl 1508.93089

Summary: This paper focuses on designing an \(\mathcal{H}_\infty\) load-frequency controller for power systems suffering from deception attacks based on the event-based secure control scheme. Firstly, to alleviate the occurrence of congestion phenomenon in the bandwidth-limited communication network, an event-triggered scheme is introduced into the sensor-to-controller channel. Subsequently, a mathematical model with regard to the event-triggered load frequency control is established under considering the existence of deception attacks. Then, in terms of Lyapunov stability theory and an improved inequality technique, some sufficient conditions that can ensure the mean-square asymptotic stability with a prescribed \(\mathcal{H}_\infty\) performance index of the closed-loop system are deduced. Besides, the corresponding controller gain is obtained by solving those conditions. Finally, two numerical examples are presented to verify the effectiveness of the proposed method.

MSC:

93B36 \(H^\infty\)-control
93C05 Linear systems in control theory
93E15 Stochastic stability in control theory
Full Text: DOI

References:

[1] Wen, S.; Yu, X.; Zeng, Z.; Wang, J., Event-triggering load frequency control for multiarea power systems with communication delays, IEEE Trans. Ind. Electron., 63, 2, 1308-1317 (2016)
[2] Hui, Q.; Yang, J.; Yang, X.; Chen, Z.; Li, Y.; Teng, Y., A robust control strategy to improve transient stability for AC-DC interconnected power system with wind farms, CSEE J. Power Energy Syst., 5, 2, 259-265 (2019)
[3] Hu, X.; Xia, J.; Wang, Z.; Song, X.; Shen, H., Robust distributed state estimation for Markov coupled neural networks under imperfect measurements, J. Frankl. Inst., 357, 4, 2420-2436 (2020) · Zbl 1451.93382
[4] Ibraheem; Niazi, K. R.; Sharma, G., Study on dynamic participation of wind turbines in automatic generation control of power systems, Electr. Power Compon. Syst., 43, 1, 44-55 (2014)
[5] Talaq, J.; Al-Basri, F., Adaptive fuzzy gain scheduling for load frequency control, IEEE Trans. Power Syst., 14, 1, 145-150 (1999)
[6] Rerkpreedapong, D.; Hasanovic, A.; Feliachi, A., Robust load frequency control using genetic algorithms and linear matrix inequalities, IEEE Trans. Power Syst., 18, 2, 855-861 (2003)
[7] Shi, K.; Tang, Y.; Zhong, S.; Yin, C.; Huang, X.; Wang, W., Nonfragile asynchronous control for uncertain chaotic Lurie network systems with Bernoulli stochastic process, Int. J. Robust Nonlinear Control, 28, 5, 1693-1714 (2018) · Zbl 1390.93735
[8] Xia, J.; Gao, H.; Liu, M.; Zhuang, G.; Zhang, B., Non-fragile finite-time extended dissipative control for a class of uncertain discrete time switched linear systems, J. Frankl. Inst., 355, 6, 3031-3049 (2018) · Zbl 1395.93280
[9] Wu, Y.; Jiang, B.; Lu, N.; Yang, H.; Zhou, Y., Multiple incipient sensor faults diagnosis with application to high-speed railway traction devices, ISA Trans., 67, 183-192 (2017)
[10] Shen, H.; Dai, M.; Luo, Y.; Cao, J.; Chadli, M., Fault-tolerant fuzzy control for semi-Markov jump nonlinear systems subject to incomplete SMK and actuator failures, IEEE Trans. Fuzzy Syst. (2020)
[11] Wu, Y.; Jiang, B.; Wang, Y., Incipient winding fault detection and diagnosis for squirrel-cage induction motors equipped on CRH trains, ISA Trans., 99, 488-495 (2020)
[12] Shi, K.; Wang, J.; Tang, Y.; Zhong, S., Reliable asynchronous sampled-data filtering of T-S fuzzy uncertain delayed neural networks with stochastic switched topologies, Fuzzy Sets Syst., 381, 1-25 (2020) · Zbl 1464.93081
[13] Shi, K.; Zhong, S.; Tang, Y.; Cheng, J., Non-fragile memory filtering of T-S fuzzy delayed neural networks based on switched fuzzy sampled-data control, Fuzzy Sets Syst., 394, 40-64 (2020) · Zbl 1452.93021
[14] Wang, J.; Huo, S.; Xia, J.; Park, J. H.; Huang, X.; Shen, H., Generalized dissipative asynchronous output feedback control for Markov jump repeated scalar non-linear systems with time-varying delay, IET Control Theory Appl., 13, 13, 2114-2121 (2019) · Zbl 07907006
[15] Wang, X.; Xia, J.; Wang, J.; Wang, Z.; Wang, J., Reachable set estimation for Markov jump LPV systems with time delays, Appl. Math. Comput., 376, 125117 (2020) · Zbl 1475.60137
[16] Ru, T.; Xia, J.; Huang, X.; Cheng, X.; Wang, J., Reachable set estimation of delayed fuzzy inertial neural networks with Markov jumping parameters, J. Frankl. Inst., 357, 11, 6882-6898 (2020) · Zbl 1447.93020
[17] Wu, T.; Huang, X.; Chen, X.; Wang, J., Sampled-data \(H_\infty\) exponential synchronization for delayed semi-Markov jump CDNs: a looped-functional approach, Appl. Math. Comput., 377, 125156 (2020) · Zbl 1508.93326
[18] Chen, G.; Xia, J.; Zhuang, G., Delay-dependent stability and dissipativity analysis of generalized neural networks with Markovian jump parameters and two delay components, J. Frankl. Inst., 353, 9, 2137-2158 (2016) · Zbl 1347.93265
[19] Liu, Y.-A.; Xia, J.; Meng, B.; Song, X.; Shen, H., Extended dissipative synchronization for semi-Markov jump complex dynamic networks via memory sampled-data control scheme, J. Frankl. Inst., 357, 15, 10900-10920 (2020) · Zbl 1450.93082
[20] Liang, X.; Xia, J.; Chen, G.; Zhang, H.; Wang, Z., Dissipativity-based sampled-data control for fuzzy Markovian jump systems, Appl. Math. Comput., 361, 552-564 (2019) · Zbl 1428.93118
[21] Zhang, C.-K.; Jiang, L.; Wu, Q. H.; He, Y.; Wu, M., Further results on delay-dependent stability of multi-area load frequency control, IEEE Trans. Power Syst., 28, 4, 4465-4474 (2013)
[22] Seuret, A.; Gouaisbaut, F., Wirtinger-based integral inequality: Application to time-delay systems, Automatica., 49, 9, 2860-2866 (2013) · Zbl 1364.93740
[23] Xia, Y.; Wang, J.; Meng, B.; Chen, X., Further results on fuzzy sampled-data stabilization of chaotic nonlinear systems, Appl. Math. Comput., 379, 125225 (2020) · Zbl 1461.93421
[24] Wang, J.; Wang, Y.; Yan, H.; Cao, J.; Shen, H., Hybrid event-based leader-following consensus of nonlinear multi-agent systems with semi-Markov jump parameters, IEEE Syst. Journal (2020)
[25] Wang, X.; Xia, J.; Wang, J.; Wang, J.; Wang, Z., Passive state estimation for fuzzy jumping neural networks with fading channels based on the hidden Markov model, Physica A, 535, 122437 (2019) · Zbl 07571233
[26] Shen, L.; Yang, X.; Wang, J.; Xia, J., Passive gain-scheduling filtering for jumping linear parameter varying systems with fading channels based on the hidden Markov model, Proc. Inst. Mech. Eng. Part I - J. Syst. Control Eng., 233, 1, 67-79 (2019)
[27] Wang, Y.; Hu, X.; Shi, K.; Song, X.; Shen, H., Network-based passive estimation for switched complex dynamical networks under persistent dwell-time with limited signals, J. Frankl. Inst., 357, 15, 10921-10936 (2020) · Zbl 1450.93078
[28] Shen, H.; Men, Y.; Wu, Z.-G.; Cao, J.; Lu, G., Network-based quantized control for fuzzy singularly perturbed semi-Markov jump systems and its application, IEEE Trans. Circuits Syst. I, Regul. Pap., 66, 3, 1130-1140 (2018)
[29] Liu, X.; Xia, J.; Wang, J.; Shen, H., Interval type-2 fuzzy passive filtering for nonlinear singularly perturbed PDT-switched systems and its application, Journal of Systems Science and Complexity (2020)
[30] Shen, H.; Li, F.; Xu, S.; Sreeram, V., Slow state variables feedback stabilization for semi-Markov jump systems with singular perturbations, IEEE Trans. Autom. Control, 63, 8, 2709-2714 (2018) · Zbl 1423.93404
[31] Lin, X.; Li, X.; Park, J. H., Output-feedback stabilization for planar output-constrained switched nonlinear systems, Int. J. Robust Nonlinear Control, 30, 5, 1819-1830 (2020) · Zbl 1465.93163
[32] Zhang, J.; Xia, J.; Sun, W.; Zhuang, G.; Wang, Z., Finite-time tracking control for stochastic nonlinear systems with full state constraints, Appl. Math. Comput., 338, 207-220 (2018) · Zbl 1427.93229
[33] Zhang, D.; Nguang, S. K.; Yu, L., Distributed control of large-scale networked control systems with communication constraints and topology switching, IEEE Trans. Syst. Man Cybern. Syst., 47, 7, 1746-1757 (2017)
[34] Ren, H.; Zong, G.; Li, T., Event-triggered finite-time control for networked switched linear systems with asynchronous switching, IEEE Trans. Syst. Man Cybern. Syst., 48, 11, 1874-1884 (2018)
[35] Peng, C.; Zhang, J.; Yan, H., Adaptive event-triggering \(H{}_\infty\) load frequency control for network-based power systems, IEEE Trans. Ind. Electron., 65, 2, 1685-1694 (2018)
[36] Yue, D.; Tian, E.; Han, Q.-L., A delay system method for designing event-triggered controllers of networked control systems, IEEE Trans. Autom. Control, 58, 2, 475-481 (2013) · Zbl 1369.93183
[37] Farraj, A.; Hammad, E.; Kundur, D., A distributed control paradigm for smart grid to address attacks on data integrity and availability, IEEE Trans. Signal Inf. Process. Netw., 4, 1, 70-81 (2018)
[38] Liu, J.; Gu, Y.; Zha, L.; Liu, Y.; Cao, J., Event-triggered \(H{}_\infty\) load frequency control for multiarea power systems under hybrid cyber attacks, IEEE Trans. Syst. Man Cybern. Syst., 49, 8, 1665-1678 (2019)
[39] Liu, J.; Wei, L.; Xie, X.; Tian, E.; Fei, S., Quantized stabilization for T-S fuzzy systems with hybrid-triggered mechanism and stochastic cyber-attacks, IEEE Trans. Fuzzy Syst., 26, 6, 3820-3834 (2018)
[40] An, L.; Yang, G.-H., Improved adaptive resilient control against sensor and actuator attacks, Inf. Sci., 423, 145-156 (2018) · Zbl 1447.93160
[41] Liu, J.; Gu, Y.; Xie, X.; Yue, D.; Park, J. H., Hybrid-driven-based \(\mathcal{H}_\infty\) control for networked cascade control systems with actuator saturations and stochastic cyber attacks, IEEE Trans. Syst. Man Cybern. Syst., 49, 12, 2452-2463 (2019)
[42] Shen, H.; Li, F.; Yan, H.; Karimi, H. R.; Lam, H.-K., Finite-time event-triggered \(\mathcal{H}_\infty\) control for T-S fuzzy Markov jump systems, IEEE Trans. Fuzzy Syst., 26, 5, 3122-3135 (2018)
[43] Shen, H.; Men, Y.; Wu, Z.-G.; Park, J. H., Nonfragile \(\mathcal{H}_\infty\) control for fuzzy Markovian jump systems under fast sampling singular perturbation, IEEE Trans. Syst. Man Cybern. Syst., 48, 12, 2058-2069 (2018)
[44] Wang, J.; Xia, J.; Shen, H.; Xing, M.; Park, J. H., \(H_\infty\) synchronization for fuzzy Markov jump chaotic systems with piecewise-constant transition probabilities subject to PDT switching rule, IEEE Trans. Fuzzy Syst. (2020)
[45] Zeng, H.-B.; Liu, X.-G.; Wang, W.; Xiao, S.-P., New results on stability analysis of systems with time-varying delays using a generalized free-matrix-based inequality, J. Frankl. Inst., 356, 13, 7312-7321 (2019) · Zbl 1418.93240
[46] Yang, F.; He, J.; Wang, D., New stability criteria of delayed load frequency control systems via infinite-series-based inequality, IEEE Trans. Ind. Inform., 14, 1, 231-240 (2018)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.