×

Parity sheaves. (English) Zbl 1344.14017

The idea of parity sheaves resembles the definition of perverse sheaves [A. A. Beilinson et al., Astérisque 100, 172 p. (1982; Zbl 0536.14011)]. For a given stratification of a complex algebraic variety \(X=\bigsqcup_{\lambda\in\Lambda}X_\lambda\) one considers pariversity, i.e., a function \(\Lambda\to\mathbb Z/2\). Let \(k\) be a complete local principal ideal domain. For a complex of sheaves of \(k\)-modules \(\mathcal F\) , or rather an element of \(D(X)\), the bounded constructible derived category of \(k\)-sheaves and a fixed pariversity there is defined a condition via vanishing of stalk and costalk cohomology of \(\mathcal F\) along strata. The equivariant context when a reductive group \(G\) is acting on \(X\) is also treated in parallel. Here in contrast to perversity condition only parity of the degree matters. The sheaves satisfying suitable conditions are called parity sheaves. The effects related to the torsion cohomology in this context might be better traced. For example, the Decomposition Theorem for a proper push forward is proven for a preferred pariversity. On the other hand parity sheaves with a given support might not exist in general. They do exist in many cases of varieties coming from the representation theory (Schubert varieties, nilpotent cones), also for toric varieties.

MSC:

14F43 Other algebro-geometric (co)homologies (e.g., intersection, equivariant, Lawson, Deligne (co)homologies)
14F05 Sheaves, derived categories of sheaves, etc. (MSC2010)
55N33 Intersection homology and cohomology in algebraic topology
20C20 Modular representations and characters
14M15 Grassmannians, Schubert varieties, flag manifolds

Citations:

Zbl 0536.14011

References:

[1] Pramod N. Achar, Perverse coherent sheaves on the nilpotent cone in good characteristic, Recent developments in Lie algebras, groups and representation theory, Proc. Sympos. Pure Math., vol. 86, Amer. Math. Soc., Providence, RI, 2012, pp. 1 – 23. · Zbl 1320.20040 · doi:10.1090/pspum/086/1409
[2] A. A. Beĭlinson, J. Bernstein, and P. Deligne, Faisceaux pervers, Analysis and topology on singular spaces, I (Luminy, 1981) Astérisque, vol. 100, Soc. Math. France, Paris, 1982, pp. 5 – 171 (French). · Zbl 0536.14011
[3] Gottfried Barthel, Jean-Paul Brasselet, Karl-Heinz Fieseler, and Ludger Kaup, Equivariant intersection cohomology of toric varieties, Algebraic geometry: Hirzebruch 70 (Warsaw, 1998) Contemp. Math., vol. 241, Amer. Math. Soc., Providence, RI, 1999, pp. 45 – 68. · Zbl 0970.14028 · doi:10.1090/conm/241/03627
[4] A. Beilinson, R. Bezrukavnikov, and I. Mirković, Tilting exercises, Mosc. Math. J. 4 (2004), no. 3, 547 – 557, 782 (English, with English and Russian summaries). · Zbl 1075.14015
[5] Michel Brion and Roy Joshua, Vanishing of odd-dimensional intersection cohomology. II, Math. Ann. 321 (2001), no. 2, 399 – 437. · Zbl 0997.14005 · doi:10.1007/s002080100235
[6] Arnaud Beauville and Yves Laszlo, Conformal blocks and generalized theta functions, Comm. Math. Phys. 164 (1994), no. 2, 385 – 419. · Zbl 0815.14015
[7] Joseph Bernstein and Valery Lunts, Equivariant sheaves and functors, Lecture Notes in Mathematics, vol. 1578, Springer-Verlag, Berlin, 1994. · Zbl 0808.14038
[8] Walter Borho and Robert MacPherson, Partial resolutions of nilpotent varieties, Analysis and topology on singular spaces, II, III (Luminy, 1981) Astérisque, vol. 101, Soc. Math. France, Paris, 1983, pp. 23 – 74. · Zbl 0576.14046
[9] Tom Braden and Robert MacPherson, From moment graphs to intersection cohomology, Math. Ann. 321 (2001), no. 3, 533 – 551. · Zbl 1077.14522 · doi:10.1007/s002080100232
[10] Jonathan Brundan and Victor Ostrik, Cohomology of Spaltenstein varieties, Transform. Groups 16 (2011), no. 3, 619 – 648. · Zbl 1230.14078 · doi:10.1007/s00031-011-9149-2
[11] Armand Borel, Sous-groupes commutatifs et torsion des groupes de Lie compacts connexes, Tôhoku Math. J. (2) 13 (1961), 216 – 240 (French). · Zbl 0109.26101 · doi:10.2748/tmj/1178244298
[12] Laurent Bonavero and Michel Brion , Geometry of toric varieties, Séminaires et Congrès [Seminars and Congresses], vol. 6, Société Mathématique de France, Paris, 2002. Lectures from the Summer School held in Grenoble, June 19 – July 7, 2000. · Zbl 1005.00028
[13] Jean-Luc Brylinski and Bin Zhang, Equivariant Todd classes for toric varieties (2003), available at arXiv/0311318.
[14] Roger W. Carter, Finite groups of Lie type, Pure and Applied Mathematics (New York), John Wiley & Sons, Inc., New York, 1985. Conjugacy classes and complex characters; A Wiley-Interscience Publication. · Zbl 0567.20023
[15] Neil Chriss and Victor Ginzburg, Representation theory and complex geometry, Birkhäuser Boston, Inc., Boston, MA, 1997. · Zbl 0879.22001
[16] David A. Cox, John B. Little, and Henry K. Schenck, Toric varieties, Graduate Studies in Mathematics, vol. 124, American Mathematical Society, Providence, RI, 2011. · Zbl 1223.14001
[17] David H. Collingwood and William M. McGovern, Nilpotent orbits in semisimple Lie algebras, Van Nostrand Reinhold Mathematics Series, Van Nostrand Reinhold Co., New York, 1993. · Zbl 0972.17008
[18] Edward Cline, Brian Parshall, and Leonard Scott, Abstract Kazhdan-Lusztig theories, Tohoku Math. J. (2) 45 (1993), no. 4, 511 – 534. · Zbl 0801.20013 · doi:10.2748/tmj/1178225846
[19] V. I. Danilov, The geometry of toric varieties, Uspekhi Mat. Nauk 33 (1978), no. 2(200), 85 – 134, 247 (Russian).
[20] C. De Concini, G. Lusztig, and C. Procesi, Homology of the zero-set of a nilpotent vector field on a flag manifold, J. Amer. Math. Soc. 1 (1988), no. 1, 15 – 34. · Zbl 0646.14034
[21] Mark Andrea A. de Cataldo and Luca Migliorini, The hard Lefschetz theorem and the topology of semismall maps, Ann. Sci. École Norm. Sup. (4) 35 (2002), no. 5, 759 – 772 (English, with English and French summaries). · Zbl 1021.14004 · doi:10.1016/S0012-9593(02)01108-4
[22] Mark Andrea A. de Cataldo and Luca Migliorini, The Hodge theory of algebraic maps, Ann. Sci. École Norm. Sup. (4) 38 (2005), no. 5, 693 – 750 (English, with English and French summaries). · Zbl 1094.14005 · doi:10.1016/j.ansens.2005.07.001
[23] Michel Demazure, Invariants symétriques entiers des groupes de Weyl et torsion, Invent. Math. 21 (1973), 287 – 301 (French). · Zbl 0269.22010 · doi:10.1007/BF01418790
[24] Walter Feit, The representation theory of finite groups, North-Holland Mathematical Library, vol. 25, North-Holland Publishing Co., Amsterdam-New York, 1982. · Zbl 0493.20007
[25] Lucas Fresse, Upper triangular parts of conjugacy classes of nilpotent matrices with finite number of \?-orbits, J. Math. Soc. Japan 65 (2013), no. 3, 967 – 992. · Zbl 1350.17006
[26] William Fulton, Introduction to toric varieties, Annals of Mathematics Studies, vol. 131, Princeton University Press, Princeton, NJ, 1993. The William H. Roever Lectures in Geometry. · Zbl 0813.14039
[27] Peter Fiebig and Geordie Williamson, Parity sheaves, moment graphs and the \( p\)-smooth locus of Schubert varieties, available at arXiv:1008.0719. To appear in Ann. Inst. Fourier. · Zbl 1336.14011
[28] Mark Goresky, Robert Kottwitz, and Robert MacPherson, Equivariant cohomology, Koszul duality, and the localization theorem, Invent. Math. 131 (1998), no. 1, 25 – 83. · Zbl 0897.22009 · doi:10.1007/s002220050197
[29] S. Gaussent and P. Littelmann, LS galleries, the path model, and MV cycles, Duke Math. J. 127 (2005), no. 1, 35 – 88. · Zbl 1078.22007 · doi:10.1215/S0012-7094-04-12712-5
[30] Mark Goresky and Robert MacPherson, Stratified Morse theory, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 14, Springer-Verlag, Berlin, 1988. · Zbl 0639.14012
[31] Ian Grojnowski, Affine \( \mathfrak{sl}_p\) controls the representation theory of the symmetric groups and related Hecke algebras (1999), available at arXiv:math/9907129.
[32] Sebastian Herpel, On the smoothness of centralizers in reductive groups, Trans. Amer. Math. Soc. 365 (2013), no. 7, 3753 – 3774. · Zbl 1298.20057
[33] Carl Mautner Daniel Juteau and Geordie Williamson, Parity sheaves and tilting modules. In preparation. · Zbl 1402.14023
[34] Daniel Juteau, Cohomology of the minimal nilpotent orbit, Transform. Groups 13 (2008), no. 2, 355 – 387. · Zbl 1152.22007 · doi:10.1007/s00031-008-9009-x
[35] Daniel Juteau, Modular representations of reductive groups and geometry of affine Grassmannians (2008), available at arXiv:0804.2041. · Zbl 1152.22007
[36] Daniel Juteau, Decomposition numbers for perverse sheaves, Ann. Inst. Fourier (Grenoble) 59 (2009), no. 3, 1177 – 1229 (English, with English and French summaries). · Zbl 1187.14022
[37] V. G. Kac, Torsion in cohomology of compact Lie groups and Chow rings of reductive algebraic groups, Invent. Math. 80 (1985), no. 1, 69 – 79. · Zbl 0566.57028 · doi:10.1007/BF01388548
[38] David Kazhdan and George Lusztig, Schubert varieties and Poincaré duality, Geometry of the Laplace operator (Proc. Sympos. Pure Math., Univ. Hawaii, Honolulu, Hawaii, 1979) Proc. Sympos. Pure Math., XXXVI, Amer. Math. Soc., Providence, R.I., 1980, pp. 185 – 203. · Zbl 0461.14015
[39] Masaki Kashiwara and Pierre Schapira, Sheaves on manifolds, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 292, Springer-Verlag, Berlin, 1990. With a chapter in French by Christian Houzel. · Zbl 0709.18001
[40] Shrawan Kumar, Kac-Moody groups, their flag varieties and representation theory, Progress in Mathematics, vol. 204, Birkhäuser Boston, Inc., Boston, MA, 2002. · Zbl 1026.17030
[41] Jue Le and Xiao-Wu Chen, Karoubianness of a triangulated category, J. Algebra 310 (2007), no. 1, 452 – 457. · Zbl 1112.18009 · doi:10.1016/j.jalgebra.2006.11.027
[42] George Lusztig, Character sheaves. II, III, Adv. in Math. 57 (1985), no. 3, 226 – 265, 266 – 315. , https://doi.org/10.1016/0001-8708(85)90064-7 George Lusztig, Character sheaves. IV, Adv. in Math. 59 (1986), no. 1, 1 – 63. , https://doi.org/10.1016/0001-8708(86)90036-8 George Lusztig, Character sheaves. V, Adv. in Math. 61 (1986), no. 2, 103 – 155. , https://doi.org/10.1016/0001-8708(86)90071-X George Lusztig, Erratum: ”Character sheaves. V”, Adv. in Math. 62 (1986), no. 3, 313 – 314. · Zbl 0606.20036 · doi:10.1016/0001-8708(86)90105-2
[43] Ruslan Maksimau, Canonical basis, KLR-algebras and parity sheaves (2013), available at arXiv:1301.6261. · Zbl 1387.17030
[44] I. Mirković and K. Vilonen, Geometric Langlands duality and representations of algebraic groups over commutative rings, Ann. of Math. (2) 166 (2007), no. 1, 95 – 143. · Zbl 1138.22013 · doi:10.4007/annals.2007.166.95
[45] David Nadler, Perverse sheaves on real loop Grassmannians, Invent. Math. 159 (2005), no. 1, 1 – 73. · Zbl 1089.14008 · doi:10.1007/s00222-004-0382-3
[46] D. I. Panyushev, Rationality of singularities and the Gorenstein property of nilpotent orbits, Funktsional. Anal. i Prilozhen. 25 (1991), no. 3, 76 – 78 (Russian); English transl., Funct. Anal. Appl. 25 (1991), no. 3, 225 – 226 (1992). · Zbl 0749.14030 · doi:10.1007/BF01085494
[47] R. W. Richardson Jr., Conjugacy classes in Lie algebras and algebraic groups, Ann. of Math. (2) 86 (1967), 1 – 15. · Zbl 0153.04501 · doi:10.2307/1970359
[48] Claus Michael Ringel, The category of modules with good filtrations over a quasi-hereditary algebra has almost split sequences, Math. Z. 208 (1991), no. 2, 209 – 223. · Zbl 0725.16011 · doi:10.1007/BF02571521
[49] M. Rothenberg and N. E. Steenrod, The cohomology of classifying spaces of \?-spaces, Bull. Amer. Math. Soc. 71 (1965), 872 – 875. · Zbl 0132.19201
[50] Simon Riche, Wolfgang Soergel, and Geordie Williamson, Modular Koszul duality, available at arXiv:1209.3760. To appear in Compos. Math. · Zbl 1426.20017
[51] Jean-Pierre Serre, Représentations linéaires des groupes finis, Hermann, Paris, 1967 (French). · Zbl 0205.04001
[52] Wolfgang Soergel, On the relation between intersection cohomology and representation theory in positive characteristic, J. Pure Appl. Algebra 152 (2000), no. 1-3, 311 – 335. Commutative algebra, homological algebra and representation theory (Catania/Genoa/Rome, 1998). · Zbl 1101.14302 · doi:10.1016/S0022-4049(99)00138-3
[53] Wolfgang Soergel, Langlands’ philosophy and Koszul duality, Algebra–representation theory (Constanta, 2000), vol. 28, Kluwer Acad. Publ., Dordrecht, 2001. MR1858045 (2002j:22019) · Zbl 1001.22010
[54] Eric N. Sommers, Equivalence classes of ideals in the nilradical of a Borel subalgebra, Nagoya Math. J. 183 (2006), 161 – 185. · Zbl 1162.17008
[55] Jean-Luc Brylinski, (Co)-homologie d’intersection et faisceaux pervers, Bourbaki Seminar, Vol. 1981/1982, Astérisque, vol. 92, Soc. Math. France, Paris, 1982, pp. 129 – 157 (French). T. A. Springer, Quelques applications de la cohomologie d’intersection, Bourbaki Seminar, Vol. 1981/1982, Astérisque, vol. 92, Soc. Math. France, Paris, 1982, pp. 249 – 273 (French).
[56] Robert Steinberg, Torsion in reductive groups, Advances in Math. 15 (1975), 63 – 92. · Zbl 0312.20026 · doi:10.1016/0001-8708(75)90125-5
[57] Kari Vilonen and Geordie Williamson, Characteristic cycles and decomposition numbers, available at arXiv:1208.1198. To appear in Math. Res. Let. · Zbl 1297.14010
[58] Weiqiang Wang, Dimension of a minimal nilpotent orbit, Proc. Amer. Math. Soc. 127 (1999), no. 3, 935 – 936. · Zbl 0909.22009
[59] Geordie Williamson and Tom Braden, Modular intersection cohomology complexes on flag varieties, Math. Z. 272 (2012), no. 3-4, 697 – 727. · Zbl 1284.14031 · doi:10.1007/s00209-011-0955-y
[60] Geordie Williamson, Singular soergel bimodules. Ph.D. thesis, Albert-Ludwigs-Universität Freiburg, 2008, available at http://www.freidok.uni-freiburg.de. · Zbl 1196.20006
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.