×

On the smoothness of centralizers in reductive groups. (English) Zbl 1298.20057

Let \(G\) be a connected reductive linear algebraic group over an algebraically closed field \(k\), and let \(H\) be a closed subgroup subscheme of \(G\). This paper addresses the question of whether or not the (scheme-theoretic) centralizer of \(H\) is smooth. In the case that \(H\) itself is smooth, the question was addressed by the reviewer and co-authors [M. Bate et al., Math. Z. 269, No. 3-4, 809-832 (2011; Zbl 1242.20058)]. The results in this paper are a significant extension of this work.
The main result of the paper shows that all centralizers of closed subgroup subschemes of \(G\) are smooth if and only if the characteristic of \(k\) is zero or is “pretty good” for \(G\). The notion of a pretty good prime, also introduced in this paper, lies in between the existing notions of good and very good for primes and depends only on the root datum of \(G\). It allows one to distinguish between a reductive group and its semisimple part, which is important when answering this question. For example, all primes are pretty good for \(G=\text{GL}_2(k)\), but \(p=2\) is not pretty good for \(G=\text{SL}_2(k)\) (note that the centre of \(\text{SL}_2(k)\) is not smooth in characteristic \(2\)).
The author also relates his new idea of a pretty good prime to existing notions of standardness for reductive groups, including the “standard hypotheses” of J. C. Jantzen [Progress in Mathematics 228, 1-211 (2004; Zbl 1169.14319)], giving a unification of all of these ideas.

MSC:

20G15 Linear algebraic groups over arbitrary fields
14L15 Group schemes

References:

[1] Michael Bate, Benjamin Martin, and Gerhard Röhrle, A geometric approach to complete reducibility, Invent. Math. 161 (2005), no. 1, 177 – 218. · Zbl 1092.20038 · doi:10.1007/s00222-004-0425-9
[2] Michael Bate, Benjamin Martin, Gerhard Röhrle, and Rudolf Tange, Complete reducibility and separability, Trans. Amer. Math. Soc. 362 (2010), no. 8, 4283 – 4311. · Zbl 1204.20063
[3] Armand Borel, Linear algebraic groups, 2nd ed., Graduate Texts in Mathematics, vol. 126, Springer-Verlag, New York, 1991. · Zbl 0726.20030
[4] N. Bourbaki, Éléments de mathématique. Fasc. XXXIV. Groupes et algèbres de Lie. Chapitre IV: Groupes de Coxeter et systèmes de Tits. Chapitre V: Groupes engendrés par des réflexions. Chapitre VI: systèmes de racines, Actualités Scientifiques et Industrielles, No. 1337, Hermann, Paris, 1968 (French). · Zbl 0186.33001
[5] Michel Demazure and Pierre Gabriel, Groupes algébriques. Tome I: Géométrie algébrique, généralités, groupes commutatifs, Masson & Cie, Éditeur, Paris; North-Holland Publishing Co., Amsterdam, 1970 (French). Avec un appendice Corps de classes local par Michiel Hazewinkel. · Zbl 0203.23401
[6] M. Demazure and A. Grothendieck. Schémas en groupes, Séminaire de Géométrie Algébrique du Bois Marie 1962/64 (SGA 3). (Lecture Notes in Math., 151-153). Springer-Verlag, Berlin, 1970.
[7] Simon M. Goodwin, On generation of the root lattice by roots, Math. Proc. Cambridge Philos. Soc. 142 (2007), no. 1, 41 – 45. · Zbl 1146.17004 · doi:10.1017/S0305004106009595
[8] G. M. D. Hogeweij, Almost-classical Lie algebras. I, II, Nederl. Akad. Wetensch. Indag. Math. 44 (1982), no. 4, 441 – 452, 453 – 460. · Zbl 0512.17003
[9] Jens Carsten Jantzen, Representations of algebraic groups, 2nd ed., Mathematical Surveys and Monographs, vol. 107, American Mathematical Society, Providence, RI, 2003. · Zbl 1034.20041
[10] Jens Carsten Jantzen, Nilpotent orbits in representation theory, Lie theory, Progr. Math., vol. 228, Birkhäuser Boston, Boston, MA, 2004, pp. 1 – 211. · Zbl 1169.14319
[11] Max-Albert Knus, Alexander Merkurjev, Markus Rost, and Jean-Pierre Tignol, The book of involutions, American Mathematical Society Colloquium Publications, vol. 44, American Mathematical Society, Providence, RI, 1998. With a preface in French by J. Tits. · Zbl 0955.16001
[12] R. Lawther and D. M. Testerman, \?\(_{1}\) subgroups of exceptional algebraic groups, Mem. Amer. Math. Soc. 141 (1999), no. 674, viii+131. · Zbl 0936.20039 · doi:10.1090/memo/0674
[13] Martin W. Liebeck and Gary M. Seitz, Reductive subgroups of exceptional algebraic groups, Mem. Amer. Math. Soc. 121 (1996), no. 580, vi+111. · Zbl 0851.20045 · doi:10.1090/memo/0580
[14] Qing Liu, Algebraic geometry and arithmetic curves, Oxford Graduate Texts in Mathematics, vol. 6, Oxford University Press, Oxford, 2002. Translated from the French by Reinie Erné; Oxford Science Publications. · Zbl 0996.14005
[15] George J. McNinch, Optimal \?\?(2)-homomorphisms, Comment. Math. Helv. 80 (2005), no. 2, 391 – 426. · Zbl 1097.20040 · doi:10.4171/CMH/19
[16] George J. McNinch, The centralizer of a nilpotent section, Nagoya Math. J. 190 (2008), 129 – 181. · Zbl 1162.20030
[17] George J. McNinch and Donna M. Testerman, Completely reducible \?\?(2)-homomorphisms, Trans. Amer. Math. Soc. 359 (2007), no. 9, 4489 – 4510. · Zbl 1128.20036
[18] George J. McNinch and Donna M. Testerman, Nilpotent centralizers and Springer isomorphisms, J. Pure Appl. Algebra 213 (2009), no. 7, 1346 – 1363. · Zbl 1177.20055 · doi:10.1016/j.jpaa.2008.12.007
[19] R. W. Richardson Jr., Conjugacy classes in Lie algebras and algebraic groups, Ann. of Math. (2) 86 (1967), 1 – 15. · Zbl 0153.04501 · doi:10.2307/1970359
[20] R. W. Richardson, Affine coset spaces of reductive algebraic groups, Bull. London Math. Soc. 9 (1977), no. 1, 38 – 41. · Zbl 0355.14020 · doi:10.1112/blms/9.1.38
[21] T. A. Springer, Linear algebraic groups, 2nd ed., Progress in Mathematics, vol. 9, Birkhäuser Boston, Inc., Boston, MA, 1998. · Zbl 0927.20024
[22] T. A. Springer and R. Steinberg, Conjugacy classes, Seminar on Algebraic Groups and Related Finite Groups (The Institute for Advanced Study, Princeton, N.J., 1968/69) Lecture Notes in Mathematics, Vol. 131, Springer, Berlin, 1970, pp. 167 – 266. · Zbl 0249.20024
[23] William C. Waterhouse, Introduction to affine group schemes, Graduate Texts in Mathematics, vol. 66, Springer-Verlag, New York-Berlin, 1979. · Zbl 0442.14017
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.