×

Slow viscous flow of two porous spherical particles translating along the axis of a cylinder. (English) Zbl 1415.76623

Summary: We describe the motion of two freely moving porous spherical particles located along the axis of a cylindrical tube with background Poiseuille flow at low Reynolds number. The stream function and a framework based on cylindrical harmonics are adopted to solve the flow field around the particles and the flow within the tube, respectively. The two solutions are employed in an iterated framework using the method of reflections. We first consider the case of two identical particles, followed by two particles with different dimensions. In both cases, the drag force coefficients of the particles are solved as functions of the separation distance between the particles and the permeability of the particles. The detailed flow field in the vicinity of the two particles is investigated by plotting the streamlines and velocity contours. We find that the particle-particle interaction is dependent on the separation distance, particle sizes and permeability of the particles. Our analysis reveals that when the permeability of the particles is large, the streamlines are more parallel and the particle-particle interaction has less effect on the particle motion. We further show that a smaller permeability and bigger particle size generally tend to squeeze the streamlines and velocity contour towards the wall.

MSC:

76S05 Flows in porous media; filtration; seepage
76D07 Stokes and related (Oseen, etc.) flows

References:

[1] Auriault, J.-L., On the domain of validity of Brinkman’s equation, Trans. Porous Med., 79, 2, 215-223, (2009) · doi:10.1007/s11242-008-9308-7
[2] Beavers, G. S.; Joseph, D. D., Boundary conditions at a naturally permeable wall, J. Fluid Mech., 30, 1, 197-207, (1967) · doi:10.1017/S0022112067001375
[3] Bhattacharya, S.; Mishra, C.; Bhattacharya, S., Analysis of general creeping motion of a sphere inside a cylinder, J. Fluid Mech., 642, 295-328, (2010) · Zbl 1183.76675 · doi:10.1017/S0022112009991789
[4] Bocquet, L.; Charlaix, E., Nanofluidics, from bulk to interfaces, Chem. Soc. Rev., 39, 3, 1073-1095, (2010) · doi:10.1039/B909366B
[5] Brenner, H., The Stokes resistance of an arbitrary particle, Chem. Engng Sci., 18, 1, 1-25, (1963) · doi:10.1016/0009-2509(63)80001-9
[6] Brenner, H., The Stokes resistance of an arbitrary particle. Part II. An extension, Chem. Engng Sci., 19, 9, 599-629, (1964) · doi:10.1016/0009-2509(64)85051-X
[7] Brenner, H.; Happel, J., Slow viscous flow past a sphere in a cylindrical tube, J. Fluid Mech., 4, 2, 195-213, (1958) · Zbl 0083.40807 · doi:10.1017/S0022112058000392
[8] Brinkman, H. C., A calculation of the viscous force exerted by a flowing fluid on a dense swarm of particles, Appl. Sci. Res., 1, 1, 27-34, (1949) · Zbl 0041.54204 · doi:10.1007/BF02120313
[9] Buehler, K. L.; Anderson, J. L., Solvent effects on the permeability of membrane-supported gels, Ind. Engng Chem. Res., 41, 3, 464-472, (2002) · doi:10.1021/ie010321z
[10] Chen, T. C.; Skalak, R., Stokes flow in a cylindrical tube containing a line of spheroidal particles, Appl. Sci. Res., 22, 1, 403-441, (1970) · Zbl 0212.59304 · doi:10.1007/BF00400546
[11] Chudasama, N. A.; Prasad, K.; Siddhanta, A. K., Agarose functionalization: synthesis of PEG-agarose amino acid nano-conjugate – its structural ramifications and interactions with BSA in a varying pH regime, Carbohyd. Polym., 151, 735-742, (2016) · doi:10.1016/j.carbpol.2016.06.020
[12] Daiguji, H.; Yang, P.; Szeri, A. J.; Majumdar, A., Electrochemomechanical energy conversion in nanofluidic channels, Nano Lett., 4, 12, 2315-2321, (2004) · doi:10.1021/nl0489945
[13] Feng, H.; Wong, T. N.; Che, Z.; , Chaotic micromixer utilizing electro-osmosis and induced charge electro-osmosis in eccentric annulus, Phys. Fluids, 28, 6, (2016) · doi:10.1063/1.4952971
[14] Foquet, M.; Korlach, J.; Zipfel, W.; Webb, W. W.; Craighead, H. G., DNA fragment sizing by single molecule detection in submicrometer-sized closed fluidic channels, Anal. Chem., 74, 6, 1415-1422, (2002) · doi:10.1021/ac011076w
[15] Greenstein, T.; Happel, J., Theoretical study of the slow motion of a sphere and a fluid in a cylindrical tube, J. Fluid Mech., 34, 4, 705-710, (1968) · Zbl 0167.55302 · doi:10.1017/S002211206800217X
[16] Happel, J.; Brenner, H., Low Reynolds Number Hydrodynamics: With Special Applications to Particulate Media, (1983), Springer
[17] Hasimoto, H., Slow motion of a small sphere in a cylindrical domain, J. Phys. Soc. Japan, 41, 6, 2143-2144, (1976) · doi:10.1143/JPSJ.41.2143
[18] Higdon, J. J. L.; Kojima, M., On the calculation of Stokes’ flow past porous particles, Intl J. Multiphase Flow, 7, 6, 719-727, (1981) · Zbl 0484.76049 · doi:10.1016/0301-9322(81)90041-0
[19] Ho, C.-M.; Tai, Y.-C., Micro-electro-mechanical-systems (MEMS) and fluid flows, Annu. Rev. Fluid Mech., 30, 579-612, (1998) · doi:10.1146/annurev.fluid.30.1.579
[20] Huang, Y.; Chen, J.; Wong, T.; Liow, J.-L., Experimental and theoretical investigations of non-Newtonian electro-osmotic driven flow in rectangular microchannels, Soft Matt., 12, 29, 6206-6213, (2016) · doi:10.1039/C6SM00408C
[21] Huang, Y.; Wang, Y. L.; Wong, T. N., AC electric field controlled non-Newtonian filament thinning and droplet formation on the microscale, Lab on a Chip, 17, 17, 2969-2981, (2017) · doi:10.1039/C7LC00420F
[22] Jeffrey, D. J., Low-Reynolds-number flow between converging spheres, Mathematika, 29, 1, 58-66, (1982) · Zbl 0479.76040 · doi:10.1112/S002557930001216X
[23] Kapur, V.; Charkoudian, J. C.; Kessler, S. B.; Anderson, J. L., Hydrodynamic permeability of hydrogels stabilized within porous membranes, Ind. Engng Chem. Res., 35, 9, 3179-3185, (1996) · doi:10.1021/ie960015z
[24] Kim, S., Stokes flow past three spheres: an analytic solution, Phys. Fluids, 30, 8, 2309-2314, (1987) · Zbl 0645.76039 · doi:10.1063/1.866120
[25] Kim, S.; Karrila, S. J., Microhydrodynamics: Principles and Selected Applications, (2005), Dover
[26] Kim, S.-K.; Koo, H.-J.; Liu, J.; Braun, P. V., Flexible and wearable fiber microsupercapacitors based on carbon nanotube-agarose gel composite electrodes, ACS Appl. Mater. Interfaces, 9, 23, 19925-19933, (2017) · doi:10.1021/acsami.7b04753
[27] Koh, J. B. Y.; , Effect of dielectrophoresis on spermatozoa, Microfluid. Nanofluid., 17, 4, 613-622, (2014) · doi:10.1007/s10404-014-1342-x
[28] Krainov, V. P.; Smirnov, B. M.; Tereshonok, D. V., Permeability of porous materials for liquid and gases, Europhys. Lett., 108, 3, (2014) · doi:10.1209/0295-5075/108/34002
[29] Lamb, H.; Caflisch, R., Hydrodynamics, (1993), Cambridge University Press · Zbl 0828.01012
[30] Lee, C.; Yang, E.-H.; Myung, N. V.; George, T., A nanochannel fabrication technique without nanolithography, Nano Lett., 3, 10, 1339-1340, (2003) · doi:10.1021/nl034399b
[31] Leichtberg, S.; Pfeffer, R.; Weinbaum, S., Stokes flow past finite coaxial clusters of spheres in a circular cylinder, Intl J. Multiphase Flow, 3, 2, 147-169, (1976) · Zbl 0372.76030 · doi:10.1016/0301-9322(76)90005-7
[32] ; Kang, Y. J.; Ooi, K. T.; Yang, C.; Wong, T. N., Frequency-dependent velocity and vorticity fields of electro-osmotic flow in a closed-end cylindrical microchannel, J. Micromech. Microengng, 15, 2, 301-312, (2005) · doi:10.1088/0960-1317/15/2/009
[33] ; Ooi, K. T.; Yang, C.; Chai, J. C.; Wong, T. N., Developing electro-osmotic flow in closed-end micro-channels, Intl J. Engng Sci., 43, 17-18, 1349-1362, (2005) · doi:10.1016/j.ijengsci.2005.05.015
[34] ; Tran, N. P.; Saini, A. R.; Ong, K. C. H.; Chia, W. J., Analysis of a swimming sperm in a shear flow, Microfluid. Nanofluid., 17, 5, 809-819, (2014) · doi:10.1007/s10404-014-1371-5
[35] Mazur, P.; Van Saarloos, W., Many-sphere hydrodynamic interactions and mobilities in a suspension, Physica A, 115, 1-2, 21-57, (1982) · doi:10.1016/0378-4371(82)90127-3
[36] Mika, A. M.; Childs, R. F., Calculation of the hydrodynamic permeability of gels and gel-filled microporous membranes, Ind. Engng Chem. Res., 40, 7, 1694-1705, (2001) · doi:10.1021/ie000794q
[37] Mo, G.; Sangani, A. S., A method for computing Stokes flow interactions among spherical objects and its application to suspensions of drops and porous particles, Phys. Fluids, 6, 5, 1637-1652, (1994) · Zbl 0829.76019 · doi:10.1063/1.868227
[38] Mokadam, R. G., Thermodynamic analysis of the Darcy law, Trans. ASME J. Appl. Mech., 28, 2, 208-212, (1961) · Zbl 0121.43303 · doi:10.1115/1.3641653
[39] Navardi, S.; Bhattacharya, S., General methodology to evaluate two-particle hydrodynamic friction inside cylinder-bound viscous fluid, Comput. Fluids, 76, 149-169, (2013) · Zbl 1391.76124 · doi:10.1016/j.compfluid.2013.01.004
[40] Navardi, S.; Bhattacharya, S.; Wu, H., Stokesian simulation of two unequal spheres in a pressure-driven creeping flow through a cylinder, Comput. Fluids, 121, 145-163, (2015) · Zbl 1390.76069 · doi:10.1016/j.compfluid.2015.07.027
[41] Neale, G.; Epstein, N.; Nader, W., Creeping flow relative to permeable spheres, Chem. Engng Sci., 28, 10, 1865-1874, (1973) · doi:10.1016/0009-2509(73)85070-5
[42] Neale, G.; Nader, W., Practical significance of Brinkman’s extension of Darcy’s law: coupled parallel flows within a channel and a bounding porous medium, Can. J. Chem. Engng, 52, 4, 475-478, (1974) · doi:10.1002/cjce.5450520407
[43] Nield, D. A.; Bejan, A., Convection in Porous Media, (2006), Springer · Zbl 1256.76004
[44] O’Neill, M. E., A sphere in contact with a plane wall in a slow linear shear flow, Chem. Engng Sci., 23, 11, 1293-1298, (1968) · doi:10.1016/0009-2509(68)89039-6
[45] O’Neill, M. E., Exact solutions of the equations of slow viscous flow generated by the asymmetrical motion of two equal spheres, Appl. Sci. Res., 21, 1, 452-466, (1969) · Zbl 0185.54703 · doi:10.1007/BF00411627
[46] Padmavathi, B. S.; Amaranath, T.; Nigam, S. D., Stokes flow past a porous sphere using Brinkman’s model, Z. Angew. Math. Phys., 44, 5, 929-939, (1993) · Zbl 0783.76030 · doi:10.1007/BF00942818
[47] Prakash, J.; Sekhar, G. P. R., Arbitrary oscillatory Stokes flow past a porous sphere using Brinkman model, Meccanica, 47, 5, 1079-1095, (2012) · Zbl 1293.76140 · doi:10.1007/s11012-011-9494-1
[48] Purcel, E. A., Life at low Reynolds number, Am. J. Phys., 45, 1, 3-11, (1977) · doi:10.1119/1.10903
[49] Reuland, P.; Felderhof, B. U.; Jones, R. B., Hydrodynamic interaction of two spherically symmetric polymers, Physica A, 93, 3-4, 465-475, (1978) · doi:10.1016/0378-4371(78)90167-X
[50] Saad, E. I.; Faltas, M. S., Slow motion of a porous sphere translating along the axis of a circular cylindrical pore subject to a stress jump condition, Trans. Porous Med., 102, 1, 91-109, (2014) · doi:10.1007/s11242-013-0263-6
[51] Schatzman, M.; Schatzman, M., Numerical Analysis: A Mathematical Introduction, (2002), Clarendon Press · Zbl 0572.92010
[52] Shen, X.; ; Fu, H. C., Traction reveals mechanisms of wall effects for microswimmers near boundaries, Phys. Rev. E, 95, 3, (2017)
[53] Sinha, P. M.; Valco, G.; Sharma, S.; Liu, X.; Ferrari, M., Nanoengineered device for drug delivery application, Nanotechnology, 15, 10, S585-S589, (2004) · doi:10.1088/0957-4484/15/10/015
[54] Song, Y.; Kim, M.-O.; Kwon, D.-S.; Kim, Y.-J.; Kim, J., Facile fabrication of sub-20-nm nanochannels based on crystallinity-dependent anisotropic etching of silicon, Microelectron. Engng, 98, 309-312, (2012) · doi:10.1016/j.mee.2012.07.100
[55] Sonshine, R. M.; Brenner, H., The Stokes translation of two or more particles along the axis of an infinitely long circular cylinder, Appl. Sci. Res., 16, 1, 425-454, (1966) · doi:10.1007/BF00384081
[56] Urbakh, M.; Daikhin, L.; Klafter, J., Velocity profiles and the Brinkman equation in nanoscale confined liquids, Europhys. Lett., 32, 2, 125-130, (1995) · doi:10.1209/0295-5075/32/2/006
[57] Vainshtein, P.; Shapiro, M.; Gutfinger, C., Creeping flow past and within a permeable spheroid, Intl J. Multiphase Flow, 28, 12, 1945-1963, (2002) · Zbl 1137.76769 · doi:10.1016/S0301-9322(02)00106-4
[58] Van Der Heyden, F. H. J.; Bonthuis, D. J.; Stein, D.; Meyer, C.; Dekker, C., Electrokinetic energy conversion efficiency in nanofluidic channels, Nano Lett., 6, 10, 2232-2237, (2006) · doi:10.1021/nl061524l
[59] Wang, H.; Skalak, R., Viscous flow in a cylindrical tube containing a line of spherical particles, J. Fluid Mech., 38, 1, 75-96, (1969) · Zbl 0179.56607 · doi:10.1017/S002211206900005X
[60] Wilson, H. J., Stokes flow past three spheres, J. Comput. Phys., 245, 302-316, (2013) · Zbl 1349.76653 · doi:10.1016/j.jcp.2013.03.020
[61] Yao, X.; ; Wong, T. N., Slow viscous flow around two particles in a cylinder, Microfluid. Nanofluid., 21, 10, 161, (2017) · doi:10.1007/s10404-017-1996-2
[62] Zhong, X.; Duan, F., Flow regime and deposition pattern of evaporating binary mixture droplet suspended with particles, Eur. Phys. J. E, 39, 2, 1-6, (2016)
[63] Zhong, X.; Xie, H.; Duan, F., Deposition patterns from evaporating sessile droplets with suspended mixtures of multi-sized and multi-species hydrophilic and non-adsorbing nanoparticles, Appl. Therm. Engng, 111, 1565-1572, (2017) · doi:10.1016/j.applthermaleng.2016.08.040
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.