×

Arbitrary oscillatory Stokes flow past a porous sphere using Brinkman model. (English) Zbl 1293.76140

Summary: The present paper deals with the hydrodynamics of a porous sphere placed in an arbitrary oscillatory Stokes flow. Unsteady Stokes equation is used for the flow outside the porous sphere and Brinkman equation is used for the flow inside the porous sphere. Corresponding Faxén’s law for drag and torque is derived and compared with few existing results in some special cases. Examples like uniform flow, oscillatory shear flow and oscillating Stokeslet are discussed. Also, translational oscillation of a weakly permeable sphere is discussed.

MSC:

76S05 Flows in porous media; filtration; seepage
76D07 Stokes and related (Oseen, etc.) flows

Software:

COMSOL
Full Text: DOI

References:

[1] Higdon JJL, Kojima M (1981) On the calculation of Stokes flow past porous particles. Int J Multiph Flow 7(6):719–727 · Zbl 0484.76049 · doi:10.1016/0301-9322(81)90041-0
[2] Yu Q, Kaloni PN (1988) A cartesian-tensor solution of the Brinkman equation. J Eng Math 22:177–188 · Zbl 0663.76116 · doi:10.1007/BF02383599
[3] Keh HJ, Chen SH (1996) The motion of a slip spherical particle in an arbitrary Stokes flow. Eur J Mech B, Fluids 15:791–807 · Zbl 0886.76021
[4] Hetsroni G, Haber S (1970) The flow in and around a droplet or bubble submerged in an unbound arbitrary velocity field. Rheol Acta 9:488–496 · Zbl 0223.76037 · doi:10.1007/BF01985457
[5] Hetsroni G, Wacholder E, Haber S (1971) The hydrodynamic resistance of a fluid sphere submerged in Stokes flows. Z Angew Math Mech 51:45–50 · Zbl 0252.76020 · doi:10.1002/zamm.19710510105
[6] Rallison JM (1978) Note on the Faxén relations for a particle in Stokes flow. J Fluid Mech 88(3):529–533 · Zbl 0385.76035 · doi:10.1017/S0022112078002256
[7] Masliyah JH, Neale G, Malysa K, van de Ven TGM (1987) Creeping flow over a composite sphere: solid core with porous shell. Chem Eng Sci 42:245–253 · doi:10.1016/0009-2509(87)85054-6
[8] Chapman AM, Higdon JJL (1992) Oscillatory Stokes flow in periodic porous media. Phys Fluids A, Fluid Dyn 4:2099–2116 · Zbl 0825.76823 · doi:10.1063/1.858507
[9] Looker JR, Carnie SL (2004) The hydrodynamics of an oscillating porous sphere. Phys Fluids 16:62–72 · Zbl 1186.76334 · doi:10.1063/1.1630051
[10] Poliak B (2000) Modelling electrokinetic behaviour and forces in colloidal systems. PhD thesis, Department of Mathematics and Statistics, The University of Melbourne
[11] Curcio S (2005) A theoretical and experimental analysis of membrane bioreactors behavior in unsteady–state conditions. Excerpt from the proc COMSOL multiphysics user’s conference, Stockholm
[12] Dragon C, Grotberg J (1991) Oscillatory flow and mass-transport in a flexible tube. J Fluid Mech 231:135–155 · Zbl 0728.76099 · doi:10.1017/S0022112091003348
[13] Dursting J, Sheridan J, Hourigan K (2006) A fluid dynamic approach to bioreactor design for cell and tissue culture. Biotechnol Bioeng 94:1197–1208
[14] Prakash J, Raja Sekhar GP, De S, Böhm M (2010) A criterion to avoid starvation zones for convection–diffusion–reaction problem inside a porous biological pellet under oscillatory flow. Int J Eng Sci 48:693–707 · Zbl 1213.76206 · doi:10.1016/j.ijengsci.2010.02.004
[15] Prakash J, Raja Sekhar GP, De S (2011) Dirichlet problem for convection–diffusion–reaction inside a permeable cylindrical porous pellet. Int J Eng Sci 49:606–624 · Zbl 1231.76318 · doi:10.1016/j.ijengsci.2010.10.006
[16] Ni X, Mackley MR, Harvey AP, Stonestreet P, Baird MHI, Rama Rao NV (2003) Mixing through oscillations and pulsations–a guide to achieving process enhancements in the chemical and process industries. Chem Eng Res Des 81:373–383 · doi:10.1205/02638760360596928
[17] Crittenden BD, Lau A, Brinkmann T, Field RW (2005) Oscillatory flow and axial dispersion in packed beds of spheres. Chem Eng Sci 60:111–122 · doi:10.1016/j.ces.2004.07.061
[18] Umnova O, Attenborough K, Li KM (2000) Cell model calculations of dynamic drag parameters in packings of spheres. J Acoust Soc Am 107:3113–3119 · doi:10.1121/1.429340
[19] Vainshtein P, Shapiro M (2009) Forces on a porous particle in an oscillating flow. J Colloid Interface Sci 330:149–155 · doi:10.1016/j.jcis.2008.10.050
[20] Padmavathi BS, Amaranath T, Nigam SD (1993) Stokes flow past a porous sphere using Brinkman’s model. Z Angew Math Phys 44:929–939 · Zbl 0783.76030 · doi:10.1007/BF00942818
[21] Raja Sekhar GP, Padmavathi BS, Amaranath T (1997) Complete general solution of the Brinkman equation. Z Angew Math Mech 77:555–556 · Zbl 0886.76092 · doi:10.1002/zamm.19970770716
[22] Saffman PG (1971) On the boundary condition at the surface of a porous medium. Stud Appl Math 50:93–101 · Zbl 0271.76080
[23] Raja Sekhar GP, Amaranath T (1996) Stokes flow past a porous sphere with an impermeable core. Mech Res Commun 23:449–460 · Zbl 0900.76652 · doi:10.1016/0093-6413(96)00045-6
[24] Neale G, Epstein N (1973) Creeping flow relative to permeable spheres. Chem Eng Sci 28:1864–1875 · doi:10.1016/0009-2509(73)85070-5
[25] Davis RH, Stone HA (1993) Flow through beds of porous particles. Chem Eng Sci 23:3993–4005 · doi:10.1016/0009-2509(93)80378-4
[26] Chen SB, Ye X (2000) Faxen’s laws of a composite sphere under creeping flow conditions. J Colloid Interface Sci 221:50–57 · doi:10.1006/jcis.1999.6552
[27] Filippov AN, Vasin SI, Starov VM (2006) Mathematical modeling of the hydrodynamic permeability of a membrane built up from porous particles with a permeable shell. Colloids Surf A 282–283:272–278 · doi:10.1016/j.colsurfa.2005.12.001
[28] Vasin SI, Filippov AN, Starov VM (2008) Hydrodynamic permeability of membranes built up by particles covered by porous shells: Cell models. Adv Colloid Interface Sci 139:83–96 · doi:10.1016/j.cis.2008.01.005
[29] Cichocki B, Felderhof BU (2009) Hydrodynamic friction coefficients of coated spherical particles. J Chem Phys 130:164712
[30] Abade GC, Cichocki B, Ekiel-Je\.zewska ML, Nägele G, Wajnryb E (2010) Short-time dynamics of permeable particles in concentrated suspensions. J Chem Phys 132:014503 · doi:10.1063/1.3274663
[31] Nield DA (2009) The Beavers–Joseph boundary condition and related matters: A historical and critical note. Transp Porous Media 78:537–540 · doi:10.1007/s11242-009-9344-y
[32] Ochoa-Tapia JA, Whitaker S (1995) Momentum transfer at the boundary between a porous medium and a homogeneous fluid-Theoretical development. Int J Heat Mass Transf 38:2635–2646 · Zbl 0923.76320 · doi:10.1016/0017-9310(94)00346-W
[33] Ochoa-Tapia JA, Whitaker S (1995) Momentum transfer at the boundary between a porous medium and a homogeneous fluid-Comparison with experiment. Int J Heat Mass Transf 38:2647–2655 · Zbl 0923.76320 · doi:10.1016/0017-9310(94)00347-X
[34] Masliyah JH, Neale G, Malysa K, Van De Ven TGM (1987) Creeping flow over a composite sphere: solid core with porous shell. Chem Eng Sci 42:245–253 · doi:10.1016/0009-2509(87)85054-6
[35] Raja Sekhar GP (1997) Complete general solutions of Stokes and Brinkman equations and their applications. PhD thesis, University of Hyderabad, India
[36] Pozrikidis C (1992) Boundary integral and singularity methods for linearized flow. Cambridge Univ Press, Cambridge · Zbl 0772.76005
[37] Kim S, Lu SY (1987) The functional similarity between Faxén relations and singularity solutions for fluid-fluid, fluid-solid and solid-solid dispersions. Int J Multiph Flow 13:837–844 · Zbl 0636.76088 · doi:10.1016/0301-9322(87)90070-X
[38] Kohr M, Pop I (2004) Viscous incompressible flow for low Reynolds numbers. WIT Press, Southampton · Zbl 1064.76001
[39] Pozrikidis C (1989) A singularity method for unsteady linearized flow. Phys Fluids A, Fluid Dyn 1:1508–1520 · Zbl 0692.76037 · doi:10.1063/1.857329
[40] Kim S, Karrila SJ (1991) Microhydrodynamics: Principles and selected applications. Butterworth-Heinemann, Boston
[41] Howells ID (1974) Drag due to the motion of a newtonian fluid through a sparse random array of small fixed rigid objects. J Fluid Mech 64:449–475 · Zbl 0291.76015 · doi:10.1017/S0022112074002503
[42] O’Neill ME, Bhatt BS (1991) Slow motion of a solid sphere in the presence of a naturally permeable surface. Q J Mech Appl Math 44:91–104 · Zbl 0736.76056 · doi:10.1093/qjmam/44.1.91
[43] Feng Z-G, Michaelides EE (1998) Motion of a permeable sphere at finite but small Reynolds numbers. Phys Fluids 10:1375–1383 · doi:10.1063/1.869662
[44] Roux CL (2009) Flow of fluids with pressure dependent viscosities in an orthogonal rheometer subject to slip boundary conditions. Meccanica 44:71–83 · Zbl 1163.76338 · doi:10.1007/s11012-008-9151-5
[45] Lok YY, Pop I, Ingham DB (2010) Oblique stagnation slip flow of a micropolar fluid. Meccanica 45:187–198 · Zbl 1258.76023 · doi:10.1007/s11012-009-9236-9
[46] Prakash J, Raja Sekhar GP, Kohr M (2011) Stokes flow of an assemblage of porous particles: stress jump condition. Z Angew Math Phys. doi: 10.1007/s00033-011-0123-6 · Zbl 1291.76094
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.