×

Asymptotic mean-value formulas for solutions of general second-order elliptic equations. (English) Zbl 1489.35083

Summary: We obtain asymptotic mean-value formulas for solutions of second-order elliptic equations. Our approach is very flexible and allows us to consider several families of operators obtained as an infimum, a supremum, or a combination of both infimum and supremum, of linear operators. The families of equations that we consider include well-known operators such as Pucci, Issacs, and \(k\)-Hessian operators.

MSC:

35J60 Nonlinear elliptic equations
35D40 Viscosity solutions to PDEs

References:

[1] L. Ambrosio and H. M. Soner, Level set approach to mean curvature flow in arbitrary codimension, J. Differ. Geom. 43 (1996), 693-737. · Zbl 0868.35046
[2] A. R. Arroyo García, Nonlinear Mean Value Properties Related to the p-Laplacian, Ph.D. thesis, Universitat Autònoma de Barcelona, 2017.
[3] I. Birindelli, G. Galise, and H. Ishii, Existence through convexity for the truncated Laplacians, Math. Ann. 379 (2021), 909-950. · Zbl 1466.35203
[4] P. Blanc, F. Charro, J. D. Rossi, J. J. Manfredi, A nonlinear Mean Value Property for the Monge-Ampère operator, J. Convex Anal. 28 (2021), no. 2, 353-386. · Zbl 1466.35235
[5] P. Blanc and J. D. Rossi, Games for eigenvalues of the Hessian and concave/convex envelopes, Jour. Math. Pures Appl. 127 (2019), 192-215. · Zbl 1423.35118
[6] P. Blanc and J. D. Rossi, An asymptotic mean-value formula for eigenvalues of the Hessian related to concave/convex envelopes, Vietnam Jour. Math. 48 (2020), no. 2, 335-344. · Zbl 1442.35098
[7] W. Blaschke, Ein Mittelwertsatz und eine kennzeichnende Eigenschaft des logarithmischen Potentials, Ber. Verh. Sächs. Akad. Wiss., Leipziger 68 (1916), 3-7. · JFM 46.0742.01
[8] X. Cabré and L. A. Caffarelli, Fully nonlinear elliptic equations. American Mathematical Society Colloquium Publications, 43. American Mathematical Society, Providence, RI, 1995. pp. vi+104. · Zbl 0834.35002
[9] X. Cabré and L. Caffarelli, Interior C2,α regularity theory for a class of nonconvex fully nonlinear elliptic equations, Jour. Math. Pures Appl. 82 (2003), no. 5, 573-612. · Zbl 1274.35110
[10] L. Caffarelli, Y. Y. Li, L. Nirenberg, Some remarks on singular solutions of nonlinear elliptic equations. I, J. Fixed Point Theory Appl. 5 (2009), 353-395. · Zbl 1215.35068
[11] L. A. Caffarelli, L. Nirenberg, and J. Spruck, The Dirichlet problem for nonlinear second-order elliptic equations. III. Functions of the eigenvalues of the Hessian, Acta Math. 155 (1985), no. 3-4, 261-301. · Zbl 0654.35031
[12] M. G. Crandall, H. Ishii, and P. L. Lions, User’s guide to viscosity solutions of second order partial differential equations, Bull. Amer. Math. Soc. 27 (1992), 1-67. · Zbl 0755.35015
[13] F. DelTeso, J. Manfredi, and M. Parviainen, Convergence of Dynamic Programming Principles for the p-Laplacian, Adv. in Calc. Var. 15 (2022), no. 2, 191-212. . · Zbl 1486.35235 · doi:10.1515/acv-2019-0043
[14] D. Danielli, N. Garofalo, and D. Nhieu, Notions of convexity in Carnot groups, Comm. Anal. Geom. 11 (2003), no. 2, 263-341. · Zbl 1077.22007
[15] F. R. Harvey, H. B. Lawson Jr., Dirichlet duality and the nonlinear Dirichlet problem, Comm. Pure Appl. Math. 62 (2009), 396-443. · Zbl 1173.35062
[16] F. R. Harvey and H. B. Lawson Jr., p-convexity, p-plurisubharmonicity and the Levi problem, Indiana Univ. Math. J. 62 (2013), 149-169. · Zbl 1288.32046
[17] P. Juutinen, G. Lu, J. Manfredi, and B. Stroffolini, Convex functions on Carnot groups, Rev. Math. Iberoam. 23 (2007), no. 1, 191-200. · Zbl 1124.49024
[18] Ü. Kuran, On the mean-value property of harmonic functions, Bull. London Math. Soc. 4 (1972), 311-312. · Zbl 0257.31006
[19] E. LeGruyer and J. C. Archer, Harmonious extensions, Siam J. Math. Anal. 29 (1998), no. 1, 279-292. · Zbl 0915.46002
[20] E. Le Gruyer, On absolutely minimizing extensions and the PDE Δ∞(u)=0, NoDEA 14 (2007), 29-55. · Zbl 1154.35055
[21] M. Lewicka, A Course on Tug-of-War Games with Random Noise, Universitext, Springer, 2020. · Zbl 1452.91002
[22] M. Lewicka, J. J. Manfredi, and D. Ricciotti, Random walks and random tug of war in the Heisenberg group, Math. Annalen 377 (2020), no. 1-2, 797-846. · Zbl 1467.60032
[23] P. Lindqvist and J. Manfredi, On the mean-value property for the p-Laplace equation in the plane, Proc. Amer. Math. Soc. 144 (2016), no. 1, 143-149. · Zbl 1327.35124
[24] G. Lu, J. J. Manfredi, and B. Stroffolini, Convex functions on the Heisenberg group, Cal. Var. 19 (2003), 1-22. · Zbl 1072.49019
[25] J. J. Manfredi, M. Parviainen, and J. D. Rossi, An asymptotic mean-value characterization of p-harmonic functions, Proc. Amer. Math. Soc. 138 (2010), 881-889. · Zbl 1187.35115
[26] M. Marcus, An eigenvalue for the product of normal matrices, Am. Math. Monthly 63 (1956), no. 3, 173-174. · Zbl 0070.01304
[27] A. M. Oberman, Finite difference methods for the Infinity Laplace and p-Laplace equations, J. Comput. Appl. Math. 254 (2013), 65-80. · Zbl 1290.65098
[28] A. M. Oberman, and L. Silvestre, The Dirichlet problem for the convex envelope, Trans. Amer. Math. Soc. 363 (2011), 5871-5886. · Zbl 1244.35056
[29] Y. Peres, O. Schramm, S. Sheffield, and D. Wilson, Tug-of-war and the infinity Laplacian, J. Amer. Math. Soc. 22 (2009), no. 1, 167-210. · Zbl 1206.91002
[30] Y. Peres and S. Sheffield, Tug-of-war with noise: a game theoretic view of the p-Laplacian, Duke Math. J. 145 (2008), no. 1, 91-120. · Zbl 1206.35112
[31] I. Privaloff, Sur les fonctions harmoniques, Mat. Sb. 32 (1925), no. 3, 464-471. · JFM 51.0363.02
[32] J. P. Sha, p-convex Riemannian manifolds, Invent. Math. 83 (1986), no. 3, 437-447. · Zbl 0563.53032
[33] N. S. Trudinger and X. J. Wang, Hessian measures I, Topol. Meth. Nonlinear Anal. 10 (1997), 225-239. · Zbl 0915.35039
[34] N. S. Trudinger, X. J. Wang, Hessian measures II, Ann. Math. 150 (1999), 579-604. · Zbl 0947.35055
[35] N. S. Trudinger, X. J. Wang, Hessian measures III, J. Funct. Anal. 193 (2002), 1-23. · Zbl 1119.35325
[36] X. Wang, The k-Hessian Equation, Geometric Analysis and PDEs, Springer, Berlin, Heidelberg, 2009, pp. 177-252. · Zbl 1196.35093
[37] H. Wu, Manifolds of partially positive curvature, Indiana Univ. Math. J. 36 (1987), 525-548. · Zbl 0639.53050
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.