×

Hereditary properties of co-Kähler manifolds. (English) Zbl 1358.55010

Co-Kähler manifolds may be thought of as odd-dimensional versions of Kähler manifolds. The authors study some properties of co-Kähler manifolds by showing how such properties are inherited from those of the Kähler manifolds that construct them. First, the authors recall the definition of an almost contact metric structure \((J,\xi, \eta, g)\) on a manifold \(M^{2n+1}\). After presenting the local adapted \(J\)-basis for \(TM\), \(\{X_1,\dots, X_n, JX_1, \dots, JX_n,\xi\}\), the fundamental \(2\) form is given by \(\omega(X,Y)=g(JX,Y)\), and some classes of almost contact metric structures are recalled: co-symplectic (when \(d\omega =0=d\eta)\), normal (when \([J,J]+ 2d\eta\otimes \xi=0\)), co-Kähler when the given almost contact metric structure is both co-symplectic and normal; equivalently, \(J\) is parallel with respect to the metric \(g\). In several works, the co-symplectic structures are interpreted as corank 1 Poisson structures. The Sasakian structures have been studied intensively in the last years.
In the present paper the authors study how the properties of the co-Kähler manifolds are intimately tied up with those of the corresponding Kähler manifolds. First, they examine the cohomology algebra of a co-Kähler manifold and its effect on the manifold’s rational homotopy structure. Then they consider the structures of the minimal models (in the sense of Sullivan) of co-Kähler manifolds in terms of the decomposition obtained by H. Li [Asian J. Math. 12, No. 4, 527–544 (2008; Zbl 1170.53014)]. Next, the authors go beyond algebraic considerations in showing that co-Kähler manifolds satisfy the so-called Toral Rank Conjecture: \(\dim (H^*(M,\mathbb{Q}))\geq 2^r\) for any \(r\)-torus \(T^r\) which acts almost freely on \(M\). This result connects the geometry of the co-Kähler manifold to the size of its cohomology. The paper contains the following sections: The Lefschetz property and associated algebraic models, toral rank of co-Kähler manifolds.

MSC:

55P62 Rational homotopy theory
53D15 Almost contact and almost symplectic manifolds

Citations:

Zbl 1170.53014

References:

[1] Allday, C.; Puppe, V., Bounds on the torus rank, (Transformation Groups. Transformation Groups, Poznan 1985, 117. Transformation Groups. Transformation Groups, Poznan 1985, 117, Lect. Notes Math., vol. 1217 (1986), Springer: Springer Berlin) · Zbl 0596.57023
[2] Bousfield, A. K.; Gugenheim, V. K.A. M., On PL de Rham theory and rational homotopy type, Mem. Am. Math. Soc., 8, 179 (1976) · Zbl 0338.55008
[3] Bazzoni, G.; Oprea, J., On the structure of co-Kähler manifolds, Geom. Dedic., 170, 1, 71-85 (2014) · Zbl 1295.53016
[4] Bazzoni, G.; Lupton, G.; Oprea, J., Parallel forms, co-Kähler manifolds and their models, preprint · Zbl 1395.55013
[5] Blair, D. E., The theory of quasi-Sasakian structures, J. Differ. Geom., 1, 331-345 (1967) · Zbl 0163.43903
[6] Blanchard, A., Sur les variétés analytiques complexes, Ann. Sci. Éc. Norm. Supér., 73, 157-202 (1956) · Zbl 0073.37503
[7] Boyer, C. P.; Galicki, K., Sasakian Geometry (2008), Oxford University Press · Zbl 1155.53002
[8] Cappelletti Montano, B.; de Nicola, A.; Yudin, I., A survey on cosymplectic geometry, Rev. Math. Phys., 25, 10, Article 1343002 pp. (2013), 55 pp · Zbl 1292.53053
[9] Cappelletti Montano, B.; de Nicola, A.; Yudin, I., Hard Lefschetz theorem for Sasakian manifolds, J. Differ. Geom., 101, 1, 47-66 (2015) · Zbl 1322.58002
[10] Cappelletti Montano, B.; de Nicola, A.; Marrero, J. C.; Yudin, I., Sasakian nilmanifolds, Int. Math. Res. Not., 15, 6648-6660 (2015) · Zbl 1330.53064
[11] Chinea, D.; de León, M.; Marrero, J. C., Topology of cosymplectic manifolds, J. Math. Pures Appl., 72, 567-591 (1993) · Zbl 0845.53025
[12] Conner, P. E.; Raymond, F., Injective operations of the toral groups, Topology, 10, 283-296 (1971) · Zbl 0236.57023
[13] Conti, D.; Madsen, T. B., The odd side of torsion geometry, Ann. Mat. Pura Appl. (4), 193, 4, 1041-1067 (2014) · Zbl 1314.53055
[14] Deligne, P.; Griffiths, P.; Morgan, J.; Sullivan, D., Real homotopy theory of Kähler manifolds, Invent. Math., 29, 245-274 (1975) · Zbl 0312.55011
[15] Félix, Y.; Halperin, S.; Thomas, J.-C., Rational Homotopy Theory, Grad. Texts Math., vol. 205 (2001), Springer-Verlag: Springer-Verlag New York · Zbl 0961.55002
[16] Félix, Y.; Halperin, S.; Thomas, J.-C., Rational Homotopy Theory II (2015), World Scientific: World Scientific Hackensack, NJ · Zbl 1325.55001
[17] Félix, Y.; Oprea, J.; Tanré, D., Algebraic Models in Geometry, Oxf. Grad. Texts Math., vol. 17 (2008), Oxford University Press: Oxford University Press Oxford · Zbl 1149.53002
[18] Fernández, M.; Muñoz, V.; Santisteban, J. A., Cohomologically Kähler manifolds with no Kähler metrics, Int. J. Math. Sci., 2003, 52, 3315-3325 (2003) · Zbl 1049.53059
[19] Frejlich, P.; Miranda, E.; Martínez Torres, D., Symplectic topology of \(b\)-symplectic manifolds, preprint · Zbl 1395.53091
[20] Guillemin, V.; Miranda, E.; Pires, A. R., Codimension one symplectic foliations and regular Poisson structures, Bull. Braz. Math. Soc., 42, 4, 607-623 (2011) · Zbl 1244.53093
[21] Halperin, S., Rational homotopy and torus actions, (Aspects of Topology. Aspects of Topology, London Math. Soc. Lecture Notes, vol. 93 (1985), Cambridge Univ. Press), 293-306 · Zbl 0562.57015
[22] Halperin, S., Lectures on minimal models, Mém. Soc. Math. Fr., 9-10 (1983) · Zbl 0536.55003
[23] Jessup, B.; Lupton, G., Free torus actions and two-stage spaces, Math. Proc. Camb. Philos. Soc., 137, 191-207 (2004) · Zbl 1072.55009
[24] Li, H., Topology of co-symplectic/co-Kähler manifolds, Asian J. Math., 12, 4, 527-543 (2008) · Zbl 1170.53014
[25] Lupton, G.; Oprea, J., Cohomologically symplectic spaces: toral actions and the Gottlieb group, Trans. Am. Math. Soc., 347, 1, 261-288 (1995) · Zbl 0836.57019
[26] Martínez Torres, D., Codimension-one foliations calibrated by nondegenerate closed 2-forms, Pac. J. Math., 261, 1, 165-217 (2013) · Zbl 1276.53032
[27] Myers, S. B.; Steenrod, N. E., The group of isometries of a Riemannian manifold, Ann. Math., 40, 2, 400-416 (1939) · Zbl 0021.06303
[28] Papadima, Ş., On the formality of maps, An. Univ. Timiş. Ser. Ştiinţ. Mat., 20, 1-2, 30-40 (1982) · Zbl 0526.55011
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.