×

Improved Bohr inequality for harmonic mappings. (English) Zbl 1523.31005

Summary: In order to improve the classical Bohr inequality, we explain some refined versions for a quasi-subordination family of functions in this paper, one of which is key to build our results. Using these investigations, we establish an improved Bohr inequality with refined Bohr radius under particular conditions for a family of harmonic mappings defined in the unit disk \(\mathbb{D}\). Along the line of extremal problems concerning the refined Bohr radius, we derive a series of results. Here, the family of harmonic mappings has the form \(f=h+\overline{g}\), where \(g(0)=0\), the analytic part \(h\) is bounded by 1 and that \(|g^{\prime}(z)|\leq k|h^{\prime}(z)|\) in \(\mathbb{D}\) and for some \(k\in [0,1]\).
{© 2022 Wiley-VCH GmbH.}

MSC:

31A05 Harmonic, subharmonic, superharmonic functions in two dimensions
30B10 Power series (including lacunary series) in one complex variable
30A10 Inequalities in the complex plane

References:

[1] Y.Abu Muhanna, Bohr’s phenomenon in subordination and bounded harmonic classes, Complex Var. Elliptic Equ.55 (2010), no. 11, 1071-1078. · Zbl 1215.46018
[2] Y.Abu Muhanna, R. M.Ali, Z. C.Ng, and S. F. M.Hasni, Bohr radius for subordinating families of analytic functions and bounded harmonic mappings, J. Math. Anal. Appl.420 (2014), no. 1, 124-136. · Zbl 1293.30004
[3] L.Aizenberg, Multidimensional analogues of Bohr’s theorem on power series, Proc. Amer. Math. Soc.128 (2000), no. 4, 1147-1155. · Zbl 0948.32001
[4] L.Aizenberg, Generalization of Carathéodory’s inequality and the Bohr radius for multidimensional power series, in: Selected Topics in Complex Analysis (Joseph A.Ball (ed.) et al., eds), Oper. Theory Adv. Appl., vol. 158, Birkhäuser, Basel, 2005, pp. 87-94. · Zbl 1086.32003
[5] L.Aizenberg, Generalization of results about the Bohr radius for power series, Stud. Math.180 (2007), 161-168. · Zbl 1118.32001
[6] R. M.Ali, Y.Abu Muhanna, and S.Ponnusamy, On the Bohr inequality, in: Progress in Approximation Theory and Applicable Complex Analysis (N. K.Govil (ed.) et al., eds), Springer Optimization and Its Applications, vol. 117, 2016, pp. 269-300. · Zbl 1370.30003
[7] R. M.Ali, R. W.Barnard, and A. Yu.Solynin, A note on the Bohr’s phenomenon for power series, J. Math. Anal. Appl.449 (2017), no. 1, 154-167. · Zbl 1360.30002
[8] S. A.Alkhaleefah, I. R.Kayumov, and S.Ponnusamy, On the Bohr inequality with a fixed zero coefficient, Proc. Amer. Math. Soc.147 (2019), no. 12, 5263-5274. · Zbl 1428.30001
[9] S. A.Alkhaleefah, I. R.Kayumov, and S.Ponnusamy, Bohr-Rogosinski inequalities for bounded analytic functions, Lobachevskii J. Math.41 (2020), no. 11, 2110-2119. · Zbl 1456.30001
[10] R.Balasubramanian, B.Calado, and H.Queffélec, The Bohr inequality for ordinary Dirichlet series, Stud. Math.175 (2006), no. 3, 285-304. · Zbl 1110.30001
[11] C.Bénéteau, A.Dahlner, and D.Khavinson, Remarks on the Bohr phenomenon, Comput. Methods Funct. Theory4 (2004), no. 1, 1-19. · Zbl 1067.30094
[12] B.Bhowmik and N.Das, Bohr phenomenon for subordinating families of certain univalent functions, J. Math. Anal. Appl.462 (2018), no. 2, 1087‐1098. · Zbl 1391.30003
[13] B.Bhowmik and N.Das, Bohr phenomenon for locally univalent functions and logarithmic power series, Comput. Methods Funct. Theory19 (2019), no. 4, 729-745. · Zbl 1435.30009
[14] O.Blasco, The Bohr radius of a Banach space, in: Vector measure, integration and related topics, Oper. Theory Adv. Appl. vol. 201, Springer, New York, 2010, pp. 59-64. · Zbl 1248.46030
[15] H. P.Boas and D.Khavinson, Bohr’s power series theorem in several variables, Proc. Amer. Math. Soc.125 (1997), no. 10, 2975-2979. · Zbl 0888.32001
[16] H.Bohr, A theorem concerning power series, Proc. Lond. Math. Soc. (3)13 (1914), no. 2, 1-5. · JFM 44.0289.01
[17] E.Bombieri, Sopra un teorema di H. Bohr e G. Ricci sulle funzioni maggioranti delle serie di potenze, Boll. Unione Mat. Ital.17 (1962), 276-282. · Zbl 0109.04801
[18] F.Carlson, Sur les coefficients d’une fonction bornée dans le cercle unité (French), Ark. Mat. Astr. Fys.27A (1940), no. 1, 8 pp. · JFM 65.1239.03
[19] A.Defant and L.Frerick, A logarithmic lower bound for multi‐dimensional Bohr radii, Israel J. Math.152 (2006), no. 1, 17-28. · Zbl 1124.32003
[20] A.Defant, L.Frerick, J.Ortega‐Cerdà, M.Ounaïes, and K.Seip, The Bohnenblust‐Hille inequality for homogenous polynomials is hypercontractive, Ann. of Math.174 (2011), no. 2, 512-517.
[21] J. G.Clunie and T.Sheil‐Small, Harmonic univalent functions, Ann. Acad. Sci. Fenn. Ser. A. I.9 (1984), 3-25. · Zbl 0506.30007
[22] P. B.Djakov and M. S.Ramanujan, A remark on Bohr’s theorems and its generalizations, J. Anal.8 (2000), 65-77. · Zbl 0969.30001
[23] P.Duren, Harmonic mappings in the plane, Cambridge University Press, New York, 2004. · Zbl 1055.31001
[24] S.Evdoridis, S.Ponnusamy, and A.Rasila, Improved Bohr inequality for locally univalent harmonic mappings, Indag. Math. (N. S.)30 (2019), 201-213. · Zbl 1404.31002
[25] S. R.Garcia, J.Mashreghi, and W. T.Ross, Finite Blaschke products and their connections, Springer, Cham, 2018. · Zbl 1398.30002
[26] H.Hamada and T.Honda, Some generalizations of Bohr’s theorem, Math. Methods Appl. Sci.35 (2012), no. 17, 2031-2035. · Zbl 1279.32014
[27] A.Ismagilov, I. R.Kayumov, and S.Ponnusamy, Sharp Bohr type inequality, J. Math. Anal. Appl.489 (2020), no. 1, 124‐147. · Zbl 1441.30077
[28] I. R.Kayumov, D. M.Khammatova, and S.Ponnusamy, On the Bohr inequality for the Cesáaro operator, C. R. Math. Acad. Sci. Paris358 (2020), no. 5, 615-620. · Zbl 1451.30100
[29] I. R.Kayumov and S.Ponnusamy, Bohr inequality for odd analytic functions, Comput. Methods Funct. Theory17 (2017), 679-688. · Zbl 1385.30003
[30] I. R.Kayumov and S.Ponnusamy, Bohr’s inequalities for the analytic functions with lacunary series and harmonic functions, J. Math. Anal. Appl.465 (2018), 857-871. · Zbl 1394.31001
[31] I. R.Kayumov and S.Ponnusamy, Improved version of Bohr’s inequality, C. R. Math. Acad. Sci. Paris356 (2018), no. 3, 272-277. · Zbl 1432.30002
[32] I. R.Kayumov and S.Ponnusamy, On a powered Bohr inequality, Ann. Acad. Sci. Fenn. Ser. A I Math.44 (2019), 301-310. · Zbl 1423.30008
[33] I. R.Kayumov and S.Ponnusamy, Bohr-Rogosinski radius for analytic functions. arXiv:1708.05585v1 · Zbl 1456.30001
[34] I. R.Kayumov, S.Ponnusamy, and N.Shakirov, Bohr radius for locally univalent harmonic mappings, Math. Nachr.291 (2018), 1757-1768. · Zbl 1398.30003
[35] S.Kumar and S. K.Sahoo, Bohr inequalities for certain integral operators, Mediterr. J. Math.18 (2021), 268, https://doi.org/10.1007/s00009‐021‐01891‐6 · Zbl 1477.30046 · doi:10.1007/s00009‐021‐01891‐6
[36] E.Landau and D.Gaier, Darstellung und Begrüundung einiger neuerer Ergebnisse der Funktionentheorie, Springer, Berlin, 1986. · Zbl 0601.30001
[37] G.Liu, Z. H.Liu, and S.Ponnusamy, Refined Bohr inequality for bounded analytic functions, Bull. Sci. Math.173 (2021), 103054, https://doi.org/10.1016/j.bulsci.2021.103054 · Zbl 1477.30047 · doi:10.1016/j.bulsci.2021.103054
[38] G.Liu and S.Ponnusamy, On harmonic ν‐Bloch and ν‐Bloch‐type mappings, Results Math.73 (2018), no. 3, 73-90. · Zbl 1402.31001
[39] M. S.Liu and S.Ponnusamy, Multidimensional analogues of refined Bohr’s inequality, Proc. Amer. Math. Soc.149 (2021), no. 3, 2133-2146. · Zbl 1460.32002
[40] M. S.Liu, S.Ponnusamy, and J.Wang, Bohr’s phenomenon for the classes of quasi‐subordination and K‐quasiregular harmonic mappings, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM114 (2020), no. 3, 115. · Zbl 1439.30001
[41] M. S.Liu, Y. M.Shang, and J. F.Xu, Bohr‐type inequalities of analytic functions, J. Inequal. Appl.345 (2018), 13 pp. · Zbl 1498.30001
[42] Z. H.Liu and S.Ponnusamy, Bohr radius for subordination and K‐quasiconformal harmonic mappings, Bull. Malays. Math. Sci. Soc.42 (2019), 2151-2168. · Zbl 1425.31004
[43] V. I.Paulsen, G.Popescu, and D.Singh, On Bohr’s inequality, Proc. Lond. Math. Soc. (3)85 (2002), no. 2, 493-512. · Zbl 1033.47008
[44] S.Ponnusamy and A.Rasila, Planar harmonic and quasiregular mappings, Topics in modern function theory: Chapter in CMFT, RMS Lecture Notes Series No. 19 (2013), 267-333. · Zbl 1318.30039
[45] V. I.Paulsen and D.Singh, Bohr’s inequality for uniform algebras, Proc. Amer. Math. Soc.132 (2004), no. 12, 3577-3579. · Zbl 1062.46041
[46] V. I.Paulsen and D.Singh, Extensions of Bohr’s inequality, Bull. Lond. Math. Soc.38 (2006), no. 6, 991-999. · Zbl 1119.46043
[47] S.Ponnusamy, R.Vijayakumar, and K.‐J.Wirths, New inequalities for the coefficients of unimodular bounded functions, Results Math.75 (2020), 107. · Zbl 1442.30003
[48] S.Ponnusamy, R.Vijayakumar and K.‐J.Wirths, Improved Bohr’s phenomenon in quasi‐subordination classes, J. Math. Anal. Appl.506 (2022), 125645, https://doi.org/10.1016/j.jmaa.2021.125645 · Zbl 1475.30005 · doi:10.1016/j.jmaa.2021.125645
[49] S.Ponnusamy and K.‐J.Wirths, Bohr type inequalities for functions with a multiple zero at the origin, Comput. Methods Funct. Theory20 (2020), 559-570. · Zbl 1461.30004
[50] W.Rogosinski, Über Bildschranken bei Potenzreihen und ihren Abschnitten, Math. Z.17 (1923), 260-276. · JFM 49.0231.03
[51] I.Schur and G.Szegö, Über die Abschnitte einer im Einheitskreise beschränkten Potenzreihe, Sitz.‐Ber. Preuss. Acad. Wiss. Berlin Phys.‐Math. Kl. (1925), 545-560. · JFM 51.0247.02
[52] S.Sidon, Über einen Satz von Herrn Bohr, Math. Z.26 (1927), 731-732. · JFM 53.0281.04
[53] M.Tomic, Sur un theoreme de H. Bohr, Math. Scand.11 (1962), 103-106. · Zbl 0109.30202
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.