×

Liouville theorem and isolated singularity of fractional Laplacian system with critical exponents. (English) Zbl 1430.35040

Summary: This paper is devoted to the fractional Laplacian system with critical exponents. We use the method of moving spheres to derive a Liouville Theorem with at most three radial solutions, and then prove the solutions in \(\mathbb{R}^n \backslash \{0\}\) are radially symmetric and monotonically decreasing. Together with blow up analysis, we get the upper bound of the local solutions in \(B_1 \backslash \{0\}\). Our results is an extension of the classical works by L. A. Caffarelli et al. [Commun. Pure Appl. Math. 42, No. 3, 271–297 (1989; Zbl 0702.35085); Arch. Ration. Mech. Anal. 213, No. 1, 245–268 (2014; Zbl 1296.35208)], Z. Chen and C.-S. Lin [Math. Ann. 363, No. 1–2, 501–523 (2015; Zbl 1337.35046)] and Y. Guo and J. Liu [Commun. Partial Differ. Equations 33, No. 2, 263–284 (2008; Zbl 1139.35305)].

MSC:

35B53 Liouville theorems and Phragmén-Lindelöf theorems in context of PDEs
35B33 Critical exponents in context of PDEs
35B44 Blow-up in context of PDEs
35R11 Fractional partial differential equations

References:

[1] Berestycki, H.; Nirenberg, L., On the method of moving planes and the sliding method, Bull. Braz. Math. Soc., 22, 1-37 (1991) · Zbl 0784.35025
[2] Bertoin, J., Lévy processes, Cambridge Tracts in Mathematics (1996), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0861.60003
[3] Cabré, X.; Sire, Y., Nonlinear equations for fractional Laplacians, I: Regularity, maximum principles, and Hamiltonian estimates, Ann. Inst. H. Poincaré Anal. Non Linéaire, 31, 23-53 (2014) · Zbl 1286.35248
[4] Caffarelli, L.; Gidas, B.; Spruck, J., Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth, Comm. Pure Appl. Math., 42, 271-297 (1989) · Zbl 0702.35085
[5] Caffarelli, L.; Jin, T.; Sire, Y.; Xiong, J., Local analysis of solutions of fractional semi-linear elliptic equations with isolated singularities, Arch. Ration. Mech. Anal., 213, 245-268 (2014) · Zbl 1296.35208
[6] Caffarelli, L.; Silvestre, L., An extension problem related to the fractional Laplacian, Comm. Partial Differential Equations, 32, 1245-1260 (2007) · Zbl 1143.26002
[7] Chang, S.-Y. A.; González, M., Fractional Laplacian in conformal geometry, Adv. Math., 226, 1410-1432 (2011) · Zbl 1214.26005
[8] Chen, W.; Li, C., Classification of positive solutions for nonlinear differential and integral systems with critical exponents, Acta Math. Sci. Ser. B Engl. Ed., 29, 949-960 (2009) · Zbl 1212.35103
[9] Chen, W.; Li, C.; Li, Y., A direct blowing-up and rescaling argument on nonlocal elliptic equations, Int. J. Math., 27 (2016) · Zbl 1348.35080
[10] Chen, W.; Li, C.; Ou, B., Classification of solutions for a system of integral equations, Comm. Partial Differential Equations, 30, 59-65 (2005) · Zbl 1073.45005
[11] Chen, W.; Li, C.; Ou, B., Qualitative properties of solutions for an integral equation, Discrete Contin. Dyn. Syst., 12, 347-354 (2005) · Zbl 1081.45003
[12] Chen, W.; Li, C.; Ou, B., Classification of solutions for an integral equation, Comm. Pure Appl. Math., 59, 330-343 (2006) · Zbl 1093.45001
[13] Chen, C.; Lin, C.-S., Local behavior of singular positive solutions of semilinear elliptic equations with Sobolev exponent, Duke Math. J., 78, 315-334 (1995) · Zbl 0839.35014
[14] Chen, C.; Lin, C.-S., Estimates of the conformal scalar curvature equation via the method of moving planes, Comm. Pure Appl. Math., 50, 971-1017 (1997) · Zbl 0958.35013
[15] Chen, C.; Lin, C.-S., On the asymptotic symmetry of singular solutions of the scalar curvature equations, Math. Ann., 313, 229-245 (1999) · Zbl 0927.35034
[16] Chen, Z.; Lin, C.-S., Removable singularity of positive solutions for a critical elliptic system with isolated singularity, Math. Ann., 363, 501-523 (2015) · Zbl 1337.35046
[17] Chen, S.; Lu, G., Existence and nonexistence of positive radial solutions for a class of semilinear elliptic system, Nonlinear Anal., 38, 919-932 (1999) · Zbl 0934.34011
[18] Dai, W.; Liu, Z.; Lu, G., Liouville type theorems for PDE and IE systems involving fractional Laplacian on a half space, Potential Anal., 46, 569-588 (2017) · Zbl 1364.35421
[19] Fowler, R., Further studies of Emden’s and similar differential equations, Q. J. Math., 2, 233-272 (1931) · JFM 57.0523.02
[20] García-Huidobro, M.; Manásevich, R.; Mitidieri, E.; Yarur, C. S., Existence and nonexistence of positive singular solutions for a class of semilinear elliptic systems, Arch. Ration. Mech. Anal., 140, 253-284 (1997) · Zbl 0896.35038
[21] Gidas, B.; Ni, W.; Nirenberg, L., Symmetry and related properties via the maximum principle, Comm. Math. Phys., 68, 209-243 (1979) · Zbl 0425.35020
[22] González, M.; Mazzeo, R.; Sire, Y., Singular solutions of fractional order conformal Laplacians, J. Geom. Anal., 22, 845-863 (2012) · Zbl 1255.53037
[23] González, M.; Qing, J., Fractional conformal Laplacians and fractional Yamabe problems, Anal. PDE, 6, 1535-1576 (2013) · Zbl 1287.35039
[24] Graham, C.; Zworski, M., Scattering matrix in conformal geometry, Invent. Math., 152, 89-118 (2003) · Zbl 1030.58022
[25] Guo, Y.; Liu, J., Liouville type theorems for positive solutions of elliptic system in \(R^n\), Comm. Partial Differential Equations, 33, 263-284 (2008) · Zbl 1139.35305
[26] Jin, T.; Li, Y. Y.; Xiong, J., On a fractional Nirenberg problem, part I: blow up analysis and compactness of solutions, J. Eur. Math. Soc. (JEMS), 16, 1111-1171 (2014) · Zbl 1300.53041
[27] Jin, T.; Li, Y. Y.; Xiong, J., On a fractional Nirenberg problem, part II: existence of solutions, Int. Math. Res. Not. IMRN, 1555-1589 (2015) · Zbl 1319.53031
[28] Jin, T.; de Queiroz, O. S.; Sire, Y.; Xiong, J., On local behavior of singular positive solutions to nonlocal elliptic equations, Calc. Var. Partial Differential Equations, 56 (2017), Art. 9, 25 pp · Zbl 1368.35113
[29] Jin, T.; Xiong, J., A fractional yamabe flow and some applications, J. Reine Angew. Math., 696, 187-223 (2014) · Zbl 1305.53067
[30] Korevaar, N.; Mazzeo, R.; Pacard, F.; Schoen, R., Refined asymptotics for constant scalar curvature metrics with isolated singularites, Invent. Math., 135, 233-272 (1999) · Zbl 0958.53032
[31] Li, Y. Y., Remark on some conformally invariant integral equations: the method of moving spheres, J. Eur. Math. Soc. (JEMS), 6, 153-180 (2004) · Zbl 1075.45006
[32] Li, D.; Li, Z., A radial symmetry and Liouville theorem for systems involving fractional Laplacian, Front. Math. China, 12, 389-402 (2017) · Zbl 1380.35039
[33] Li, Y. Y.; Zhang, L., Liouville-type theorems and Harnack-type inequalities for semilinear elliptic equations, J. Anal. Math., 90, 27-87 (2003) · Zbl 1173.35477
[34] Li, Y. Y.; Zhu, M., Uniqueness theorems through the method of moving spheres, Duke Math. J., 80, 383-418 (1995) · Zbl 0846.35050
[35] Li. J. Bao, Y., Fractional Hardy-Hénon equations on exterior domains, J. Differential Equations, 266, 1153-1175 (2019) · Zbl 1433.35449
[36] Lieb, E. H., Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities, Ann. of Math. (2), 118, 349-374 (1983) · Zbl 0527.42011
[37] Lin, C.-S., Estimates of the conformal scalar curvature equation via the method of moving planes III, Comm. Pure Appl. Math., 53, 611-646 (2000) · Zbl 1035.53052
[38] Lu, G.; Wang, P.; Zhu, J., Liouville-type theorems and decay estimates for solutions to higher order elliptic equations, Ann. Inst. H. Poincaré Anal. Non Linéaire, 29, 5, 653-665 (2012) · Zbl 1255.35064
[39] Lu, G.; Wei, J.; Xu, X., On conformally invariant equation \((- \Delta)^p u - K(x) u^{\frac{N + 2 p}{N - 2 p}} = 0\) and its generalizations, Ann. Mat. Pura Appl. (4), 179, 309-329 (2001) · Zbl 1030.35062
[40] Mitidieri, E., Nonexistence of positive solutions of semilinear elliptic systems in \(R^N\), Differential Integral Equations, 9, 465-479 (1996) · Zbl 0848.35034
[41] Obata, M., The conjecture on conformal transformations of Riemannian manifolds, J. Differential Geom., 6, 247-258 (1971) · Zbl 0236.53042
[42] Schoen, R., Conformal deformation of a Riemannian metric to constant scalar curvature, J. Differential Geom., 20, 479-495 (1984) · Zbl 0576.53028
[43] Schoen, R., The existence of weak solutions with prescribled singular behavior for a conformally invariant scalar equations, Comm. Pure Appl. Math., 41, 317-392 (1988) · Zbl 0674.35027
[44] Schoen, R.; Yau, S. T., Conformally flat manifolds, Kleinian groups, and scalar curvature, Invent. Math., 92, 47-71 (1988) · Zbl 0658.53038
[45] Silvestre, L., Regularity of the obstacle problem for a fractional power of the Laplace operator, Comm. Pure Appl. Math., 60, 67-112 (2007) · Zbl 1141.49035
[46] Taliaferro, S.; Zhang, L., Asymptotic symmetries for conformal scalar curvature equations with singularity, Calc. Var. Partial Differential Equations, 26, 401-428 (2006) · Zbl 1175.35055
[47] Tan, J.; Xiong, J., A Harnack inequality for fractional Laplace equations with lower order terms, Discrete Contin. Dyn. Syst., 31, 3, 975-983 (2011) · Zbl 1269.26005
[48] Wei, J.; Weth, T., Radial solutions and phase separation in a system of two coupled Schrödinger equations, Arch. Ration. Mech. Anal., 190, 83-106 (2008) · Zbl 1161.35051
[49] Wei, J.; Xu, X., Classification of solutions of higher order conformally invariant equations, Math. Ann., 313, 207-228 (1999) · Zbl 0940.35082
[50] Xiong, J., The critical semilinear elliptic equation with boundary isolated singularities, J. Differ. Equ., 263, 1907-1930 (2017) · Zbl 1368.35127
[51] Zhuo, R.; Chen, W.; Cui, X.; Yuan, Z., Symmetry and non-existence of solutions for a nonlinear system involving the fractional Laplacian, Discrete Contin. Dyn. Syst., 36, 1125-1141 (2016) · Zbl 1322.31007
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.