×

Removable singularity of positive solutions for a critical elliptic system with isolated singularity. (English) Zbl 1337.35046

In this paper, the authors studied qualitative properties of positive singular solutions to the following two-coupled elliptic system with critical exponents \[ \begin{cases} -\Delta u=\mu_1u^{2^\ast-1}+\beta u^{\frac{2^\ast}{2}-1}v^{\frac{2^\ast}{2}}, &\quad x\in\mathbb R^N\backslash\{0\},\\ -\Delta v=\mu_2v^{2^\ast-1}+\beta v^{\frac{2^\ast}{2}-1}u^{\frac{2^\ast}{2}},&\quad x\in\mathbb R^N\backslash\{0\},\\ u,v>0\mathrm{ and }u,v\in C^2(\mathbb R^N\backslash\{0\}).\end{cases} \] Here, \(\mu_1\), \(\mu_2\) and \(\beta\) are all positive constants, \(N\geq 3\) and \(2^\ast:=\frac{2N}{N-2}\) is the Sobolev critical exponent. They generalize a classical result of removable singularity to the system above. Moreover, they also prove the nonexistence of positive solutions with one component bounded near 0 and the other component unbounded near 0.

MSC:

35J47 Second-order elliptic systems
35B33 Critical exponents in context of PDEs
35J75 Singular elliptic equations
35B25 Singular perturbations in context of PDEs
35B09 Positive solutions to PDEs

References:

[1] Abdellaoui, B., Felli, V., Peral, I.: Some remarks on systems of elliptic equations doubly critical the whole \[{{\mathbb{R}}^N}\] RN. Calc. Var. PDE 34, 97-137 (2009) · Zbl 1157.35030 · doi:10.1007/s00526-008-0177-2
[2] Caffarelli, L., Gidas, B., Spruck, J.: Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth. Comm. Pure Appl. Math. 42, 271-297 (1989) · Zbl 0702.35085 · doi:10.1002/cpa.3160420304
[3] Chang, S., Lin, C.-S., Lin, T., Lin, W.: Segregated nodal domains of two-dimensional multispecies Bose-Einstein condenstates. Phys. D. 196, 341-361 (2004) · Zbl 1098.82602 · doi:10.1016/j.physd.2004.06.002
[4] Chen, C., Lin, C.-S.: Local behavior of singular positive solutions of semilinear elliptic equations with Sobolev exponent. Duke Math. J. 78, 315-334 (1995) · Zbl 0839.35014 · doi:10.1215/S0012-7094-95-07814-4
[5] Chen, C., Lin, C.-S.: Estimates of the conformal scalar curvature equation via the method of moving planes. Comm. Pure Appl. Math. 50, 971-1017 (1997) · Zbl 0958.35013 · doi:10.1002/(SICI)1097-0312(199710)50:10<971::AID-CPA2>3.0.CO;2-D
[6] Chen, C., Lin, C.-S.: On the asymptotic symmetry of singular solutions of the scalar curvature equations. Math. Ann. 313, 229-245 (1999) · Zbl 0927.35034 · doi:10.1007/s002080050259
[7] Chen, W., Li, C.: Classification of positive solutions for nonlinear differential and integral systems with critical exponents. Acta Math. Scientia 29, 949-960 (2009) · Zbl 1212.35103 · doi:10.1016/S0252-9602(09)60079-5
[8] Chen, Z., Lin, C.-S.: Asymptotic behavior of least energy solutions for a critical elliptic system, Inter. Math. Res. Not. to appear (2015). doi:10.1093/imrn/rnv016 · Zbl 1342.35110
[9] Chen, Z., Lin C.-S.: On positive singular solutions for a critical elliptic system in a punctured ball, in preparation · Zbl 0958.35013
[10] Chen, Z., Lin, C.-S., Zou, W.: Sign-changing solutions and phase separation for an elliptic system with critical exponent. Comm. Partial Differ. Equ. 39, 1827-1859 (2014) · Zbl 1308.35084 · doi:10.1080/03605302.2014.908391
[11] Chen, Z., Zou, W.: An optimal constant for the existence of least energy solutions of a coupled Schrödinger system. Calc. Var. PDE 48, 695-711 (2013) · Zbl 1286.35104 · doi:10.1007/s00526-012-0568-2
[12] Chen, Z., Zou, W.: Positive least energy solutions and phase separation for coupled Schrödinger equations with critical exponent. Arch. Ration. Mech. Anal. 205, 515-551 (2012) · Zbl 1256.35132 · doi:10.1007/s00205-012-0513-8
[13] Chen, Z., Zou, W.: A remark on doubly critical elliptic systems. Calc. Var. PDE 50, 939-965 (2014) · Zbl 1298.35063 · doi:10.1007/s00526-013-0662-0
[14] Chen, Z., Zou, W.: Existence and symmetry of positive ground states for a doubly critical Schrödinger system. Trans. Am. Math. Soc. (2014). doi:10.1090/S0002-9947-2014-06237-5 · Zbl 0674.35027
[15] Chen, Z., Zou, W.: Positive least energy solutions and phase separation for coupled Schrödinger equations with critical exponent: higher dimensional case. Calc. Var. PDE 52, 423-467 (2015) · Zbl 1312.35158 · doi:10.1007/s00526-014-0717-x
[16] Fowler, R.: Further studies of Emden’s and similar differential equations. Q. J. Math. 2, 233-272 (1931) · Zbl 0003.23502
[17] Frantzeskakis, D.J.: Dark solitons in atomic Bose-Einstein condesates: from theory to experiments. J. Phys. A 43, 213001 (2010) · Zbl 1192.82033 · doi:10.1088/1751-8113/43/21/213001
[18] Guo, Y., Li, B., Wei, J.: Entire nonradial solutions for non-cooperative coupled elliptic system with critical exponents. J. Differ. Equ. 256, 3463-3495 (2014) · Zbl 1288.35232 · doi:10.1016/j.jde.2014.02.007
[19] Guo, Y., Liu, J.: Liouville type theorems for positive solutions of elliptic system in \[{{\mathbb{R}}^N}\] RN. Comm. Partial Differ. Equ. 33, 263-284 (2008) · Zbl 1139.35305 · doi:10.1080/03605300701257476
[20] Kim, S.: On vector solutions for coupled nonlinear Schrödinger equations with critical exponents. Comm. Pure Appl. Anal. 12, 1259-1277 (2013) · Zbl 1309.35137 · doi:10.3934/cpaa.2013.12.1259
[21] Kivshar, Yu.S., Luther-Davies, B.: Dark optical solitons: physics and applications. Phys. Rep. 298, 81-197 (1998) · Zbl 1139.35305
[22] Korevaar, N., Mazzeo, R., Pacard, F., Schoen, R.: Refined asymptotics for constant scalar curvature metrics with isolated singularites. Invent. Math. 135, 233-272 (1999) · Zbl 0958.53032 · doi:10.1007/s002220050285
[23] Li, C., Ma, L.: Uniqueness of positive bound states to Schrödinger systems with critical exponents. SIAM J. Math. Anal. 40, 1049-1057 (2008) · Zbl 1167.35347 · doi:10.1137/080712301
[24] Lin, C.-S.: Estimates of the conformal scalar curvature equation via the method of moving planes III. Comm. Pure Appl. Math. 53, 611-646 (2000) · Zbl 1035.53052 · doi:10.1002/(SICI)1097-0312(200005)53:5<611::AID-CPA4>3.0.CO;2-N
[25] Lin, T., Wei, J.: Ground state of \[NN\] coupled nonlinear Schrödinger equations in \[{\mathbb{R}}^n \[Rn\], n\le 3\] n≤3. Comm. Math. Phys. 255, 629-653 (2005) · Zbl 1119.35087 · doi:10.1007/s00220-005-1313-x
[26] Magnus, W., Winkler, S.: Hill’s Equation. Wiley, New York (1966) · Zbl 0158.09604
[27] Maia, L., Montefusco, E., Pellacci, B.: Positive solutions for a weakly coupled nonlinear Schrödinger systems. J. Differ. Equ. 229, 743-767 (2006) · Zbl 1104.35053 · doi:10.1016/j.jde.2006.07.002
[28] Montaru, A., Sirakov, B., Souplet, Ph: Proportionality of components, Liouville theorems and a priori estimates for noncooperative elliptic systems. Arch. Ration. Mech. Anal. (2014). doi:10.1007/s00205-013-0719-4 · Zbl 1298.35060 · doi:10.1007/s00205-013-0719-4
[29] Quittner, P., Souplet, Ph: Optimal Liouville-type theorems for noncooperative elliptic Schrödinger systems and applications. Comm. Math. Phys. 311, 1-19 (2012) · Zbl 1254.35077 · doi:10.1007/s00220-012-1440-0
[30] Schoen, R.: Conformal deformation of a Riemannian metric to constant scalar curvature. J. Differ. Geom. 20, 479-495 (1984) · Zbl 0576.53028
[31] Schoen, R.: The existence of weak solutions with prescribled singular behavior for a conformally invariant scalar equations. Comm. Pure Appl. Math. 41, 317-392 (1988) · Zbl 0674.35027 · doi:10.1002/cpa.3160410305
[32] Schoen, R., Yau, S.T.: Conformally flat manifolds, Kleinian groups, and scalar curvature. Invent. Math. 92, 47-71 (1988) · Zbl 0658.53038 · doi:10.1007/BF01393992
[33] Sirakov, B.: Least energy solitary waves for a system of nonlinear Schrödinger equations in \[{\mathbb{R}}^nRn\]. Comm. Math. Phys. 271, 199-221 (2007) · Zbl 1147.35098 · doi:10.1007/s00220-006-0179-x
[34] Taliaferro, S., Zhang, L.: Asymptotic symmetries for conformal scalar curvature equations with singularity. Calc. Var. PDE 26, 401-428 (2006) · Zbl 1175.35055 · doi:10.1007/s00526-005-0002-0
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.