×

Numerical methods of solving equations of hydrodynamics from perspectives of the code FLASH. (English) Zbl 1291.76219

Summary: In this paper we review numerical methods for hydrodynamic equations. Internal complexity make numerical solutions of these equations a formidable task. We present results of advanced numerical simulations for a complex system with a use of a publicly available code, FLASH. These results proof that the numerical methods cope very well with this task.

MSC:

76M12 Finite volume methods applied to problems in fluid mechanics
76N15 Gas dynamics (general theory)

Software:

HLLE; ZEUS; FLASH

References:

[1] J. Trangenstein, Numerical Solution of Hyperbolic Partial Differential Equations, Cambridge University Press, Cambridge, 2008.
[2] J. von Neumann and R.D. Richtmeyer, ”A method for the numerical calculation of hydrodynamic shocks”, J. Appl. Phys. 21, 232-237 (1950). · Zbl 0037.12002 · doi:10.1063/1.1699639
[3] J.M. Stone and M.L. Norman, ”ZEUS-2D: a radiation magnetohydrodynamics code for astrophysical flows in two space dimensions. II. The magnetohydrodynamic algorithms and tests”, Astrophys. J. Suppl. Ser. 80, 791-818 (1992).
[4] K. Murawski and R.S. Steinolfson, ”Numerical modeling of the solar wind interaction with Venus”, Planet. Space Sci. 44 (3), 243-252 (1996).
[5] S.K. Godunov, ”A difference scheme for numerical solution of discontinuos solution of hydrodynamic equations”, Math. Sb. 47, 271-306 (1959). · Zbl 0171.46204
[6] D. Lee and A.E. Deane, ”An unsplit staggered mesh scheme for multidimensional magnetohydrodynamics”, J. Comput. Phys. 228 (4), 952-975 (2009). · Zbl 1330.76093 · doi:10.1016/j.jcp.2008.08.026
[7] J.J. Quirk, ”An adaptive grid algorithm for computational shock hydrodynamics”, PhD Thesis, College of Aeronautics, Cranfield Institute of Technology, Cranfield, 1991.
[8] E. Toro, Riemann Solvers and Numerical Methods for Fluid Dynamics, Springer, Berlin, 2009. · Zbl 1227.76006 · doi:10.1007/b79761
[9] R.J. LeVeque, Numerical Methods for Conservation Laws, Birkhäuser Verlag Basel, Berlin, 1990. · Zbl 0723.65067
[10] A. Harten, P.D. Lax, and B. van Leer, ”On upstream differencing and Godunov-type schemes for hyperbolic conservation laws”, SIAM Rev. 25 (1), 35-61 (1983). · Zbl 0565.65051 · doi:10.1137/1025002
[11] B. Einfeld, ”On Godunov-type methods for gas dynamics”, SIAM J. Num. Anal. 25 (2), 294-318 (1988).
[12] P.L. Roe, ”Approximate Riemann solvers, parameter vectors and difference schemes”, J. Comp. Phys. 43, 357-372 (1981). · Zbl 0474.65066 · doi:10.1016/0021-9991(81)90128-5
[13] N. Aslan, ”Two-dimensional solutions of MHD equations with an adapted Roe method”, Int. J. Numer. Meth. Fluids 23 (11), 1211-1222 (1996). · Zbl 0882.76052 · doi:10.1002/(SICI)1097-0363(19961215)23:11<1211::AID-FLD469>3.0.CO;2-5
[14] B. Einfeld, C.D. Munz, P.L. Roe, amd B. Sjögreen, ”On Godunov-type methods near low densities”, J. Comp. Phys. 92 (2), 273-295 (1991).
[15] R. Donat and A. Marquina, ”Capturing shock reflections: an improved flux formula”, J. Comp. Phys. 125 (1), 42-58 (1996). · Zbl 0847.76049 · doi:10.1006/jcph.1996.0078
[16] S. Jin and Z.P. Xin, ”The relaxation schemes for systems of conservation laws in arbitrary space dimensions”, Comm. Pure Appl. Math. 48 (3), 235-276 (1995). · Zbl 0826.65078 · doi:10.1002/cpa.3160480303
[17] R.J. LeVeque, Finite-volume Methods for Hyperbolic Problems, Cambridge University Press, Cambridge, 2002. · Zbl 1010.65040 · doi:10.1017/CBO9780511791253
[18] R.J. LeVeque and M. Pelanti, ”A class of approximate Riemann solvers and their relation to relaxation schemes”, J. Comput. Phys. 172 (2), 572-591 (2001). · Zbl 0988.65072 · doi:10.1006/jcph.2001.6838
[19] V.P. Kolgan, ”Application of the minimum-derivative principle in the construction of finite-diverence schemes for numerical analysis of discontinuous solutions in gas dynamics”, Uch. Zap. TsaGI 3 (6), 68-77 (1972).
[20] B. van Leer, ”Towards the ultimate conservative difference scheme. V-A second-order sequel to Godunov’s method”, J. Comp. Phys. 32, 101-136 (1979). · Zbl 1364.65223
[21] P.L. Roe, ”Sonic flux formulae”, SIAM J. Sci. Stat. Comput. 13, 611-630 (1982). · Zbl 0747.65073 · doi:10.1137/0913034
[22] A. Harten, ”ENO schemes with subcell resolution”, J. Comp. Phys. 83, 148-184 (1989). · Zbl 0696.65078 · doi:10.1016/0021-9991(89)90226-X
[23] P.R. Woodward and P. Colella, ”The numerical simulation of two-dimensional fluid flow with strong shocks”, J. Comp. Phys. 54, 115-173 (1984). · Zbl 0573.76057 · doi:10.1016/0021-9991(84)90142-6
[24] K. Murawski and M. Goossens, ”Operator splitting for multidimensional magnetohydrodynamics”, J. Geophys. Res. 99 (A6), 11569-11573 (1994).
[25] G. Strang, ”On the construction and comparison of difference schemes”, SIAM J. Num. Anal. 5 (3), 506-517 (1968). · Zbl 0184.38503 · doi:10.1137/0705041
[26] P. Colella, ”Multidimensional upwind methods for hyperbolic conservation laws”, J. Comp. Phys. 87, 171-200 (1990). · Zbl 0694.65041 · doi:10.1016/0021-9991(90)90233-Q
[27] M.J. Berger and P. Colella, ”Local adaptive mesh refinement for shock hydrodynamics”, J. Comp. Phys. 82, 64-84 (1989). · Zbl 0665.76070 · doi:10.1016/0021-9991(89)90035-1
[28] J. Bell, M. Berger, J. Saltzman, and M. Welcome, ”Three dimensional adaptive mesh refinement for hyperbolic conservation laws”, SIAM J. Sci. Comput. 15 (1), 127-138 (1994). · Zbl 0793.65072 · doi:10.1137/0915008
[29] D.F. Martin and P. Colella, ”A cell-centered adaptive projection method for the incompressible Euler equations”, J. Comp. Phys. 163 (2), 271-312 (2000). · Zbl 0991.76052 · doi:10.1006/jcph.2000.6575
[30] D. DeZeeuw and K.G. Powell, ”An adaptively refined Cartesian mesh solver for the Euler equations”, J. Comp. Phys. 104, 56-68 (1993). · Zbl 0766.76066 · doi:10.1006/jcph.1993.1007
[31] J.J. Quirk, ”A cartesian grid approach with hierarchical refinement for compressible flows”, Computers and Fluids 23 (1), 125-142 (1994). · Zbl 0788.76067
[32] J.-Y. Trepanier, M. Reggio, and D. Ait-Ali-Yahia, ”An implicit flux- difference splitting method for solving the Euler equations on adaptive traingular grids”, Int. J. Num. Meth. Heat Fluid Flow 3 (1), 63-77 (1993).
[33] S. Arendt, ”Vorticity in stratified fluids. I. General formulation”, Geophys. Astrophys. Fluid Dynamics 68 (1), 59-83 (1993).
[34] J.V. Hollweg, ”On the origin of solar spicules”, Astrophys. J. 257, 345-353 (1982).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.