×

Non-proper helicoid-like limits of closed minimal surfaces in 3-manifolds. (English) Zbl 1161.53043

Summary: We show that there exists a metric with positive scalar curvature on \(\mathbf S^{2} \times \mathbf S^{1}\) and a sequence of embedded minimal cylinders that converges to a minimal lamination that, in a neighborhood of a strictly stable 2-sphere, is smooth except at two helicoid-like singularities on the 2-sphere. The construction is inspired by a recent example by D. Hoffman and B. White.

MSC:

53C42 Differential geometry of immersions (minimal, prescribed curvature, tight, etc.)

References:

[1] Alarcon, A., Ferrer, L., Martin, F.: Density theorems for complete minimal surfaces in R 3. http://arxiv.org/math.DG/0603737
[2] Baldi A. (2001). Weighted BV functions. Houston J. Math. 27(3): 683–705 · Zbl 1036.26009
[3] Choi H. and Schoen R. (1985). The space of minimal embeddings of a surface into a three-dimensional manifold of positive Ricci curvature. Invent. Math. 81(3): 387–394 · Zbl 0577.53044 · doi:10.1007/BF01388577
[4] Choi H. and Wang A. (1983). A first eigenvalue estimate for minimal hypersurfaces. J. Differ. Geom. 18(3): 559–562 · Zbl 0523.53055
[5] Colding T.H. and De Lellis C. (2005). Singular limit laminations, Morse index and positive scalar curvature. Topology 44(1): 24–45 · Zbl 1096.53037 · doi:10.1016/j.top.2004.01.007
[6] Colding, T.H., De Lellis, C., Minicozzi, W.P.: Three circles theorems for Schrödinger operators on cylindrical ends and geometric applications (preprint) · Zbl 1170.35035
[7] Colding, T.H., Minicozzi, W.P.: Minimal Surfaces, Courant Lecture Notes in Mathematics, vol. 4. New York University, Courant Institute of Mathematical Sciences, New York (1999) · Zbl 0987.49025
[8] Colding T.H. and Minicozzi W.P. (1998). Embedded minimal disks: proper versus nonproper–global versus local. Trans. Am. Math.Soc. 356(1): 283–289 · Zbl 1046.53001 · doi:10.1090/S0002-9947-03-03230-6
[9] Colding, T.H., Minicozzi, W.P.: Embedded minimal surfaces without area bounds in 3-manifolds. Geometry and Topology: Aarhus (1998), Contemp. Math. 258, Am. Math. Soc., Providence (2000) · Zbl 0918.53002
[10] Colding, T.H., Minicozzi, W.P.: Finiteness of embedded minimal surfaces in 3-manifolds with positive scalar curvature (in preparation) · Zbl 0999.53006
[11] Colding T.H. and Minicozzi W.P. (2002). Multivalued minimal graphs and properness of disks. Int. Math. Res. Not. 21: 1111–1127 · Zbl 1008.58012 · doi:10.1155/S107379280211107X
[12] Colding, T.H., Minicozzi, W.P.: The Calabi–Yau conjectures for embedded surfaces. Ann. Math. (2) (to appear) · Zbl 1142.53012
[13] Colding T.H. and Minicozzi W.P. (2004). The space of embedded minimal surfaces of fixed genus in a 3-manifold. I. Estimates off the axis for disks. Ann. Math. (2) 160(1): 27–68 · Zbl 1070.53031 · doi:10.4007/annals.2004.160.27
[14] Colding T.H. and Minicozzi W.P. (2004). The space of embedded minimal surfaces of fixed genus in a 3-manifold. II. Multi-valued graphs in disks. Ann. Math. (2) 160(1): 69–92 · Zbl 1070.53032 · doi:10.4007/annals.2004.160.69
[15] Colding T.H. and Minicozzi W.P. (2004). The space of embedded minimal surfaces of fixed genus in a 3-manifold. III. Planar Domains Ann. Math. (2) 160(2): 523–572 · Zbl 1076.53068 · doi:10.4007/annals.2004.160.523
[16] Colding T.H. and Minicozzi W.P. (2004). The space of embedded minimal surfaces of fixed genus in a 3-manifold. IV. Locally simply connected. Ann. Math. (2) 160(2): 573–615 · Zbl 1076.53069 · doi:10.4007/annals.2004.160.573
[17] Colding, T.H., Minicozzi, W.P.: The space of embedded minimal surface of fixed genus in a 3-manifold. V. Fixed genus, preprint (2005). http://www.arxiv.org/pdf/math/0509647 · Zbl 1322.53059
[18] Collin P. and Rosenberg H. (1999). Notes sur la démonstration de N Nadirashvili des conjectures de Hadamard et Calabi–Yau. Bull. Sci. Math. 123(7): 563–575 · Zbl 0949.53009 · doi:10.1016/S0007-4497(99)00113-X
[19] Federer H. (1980). The singular sets of area minimizing rectifiable current with codimension one and of area minimizing flat chains modulo two with arbitrary codimension. Bull. A.M.S. 76: 767–771 · Zbl 0194.35803 · doi:10.1090/S0002-9904-1970-12542-3
[20] Gilbarg D. and Trudinger N. (1983). Elliptic Partial Differential Equations of Second Order, 2nd edn. Springer, New York · Zbl 0562.35001
[21] Giusti E. (1984). Minimal surfaces and functions of bounded variation. Monographs in Mathematics, vol. 80. Birkhäuser, Basel · Zbl 0545.49018
[22] Han, Q., Lin, F.: Elliptic Partial Differential Equations, Courant Lecture Notes in Mathematics, vol. 1. New York University, Courant Institute of Mathematical Sciences, New York (1997) · Zbl 1052.35505
[23] Hardt R. and Simon L. (1979). Boundary regularity and embedded solutions for the oriented Plateau problem. Ann. Math. (2) 110(3): 439–486 · Zbl 0457.49029 · doi:10.2307/1971233
[24] Hass J., Norbury P. and Rubinstein J. (2003). Minimal spheres of arbitrarily high Morse index. Comm. Anal. Geom. 11(3): 425–439 · Zbl 1104.53055
[25] Hass J. and Scott P. (1988). The existence of least area surfaces in 3-manifolds. Trans. Am. Math. Soc. 310(1): 87–114 · Zbl 0711.53008
[26] Hoffman, D., Weber, M., Wolf, M.: An embedded genus one helicoid. Ann. Math. (2) (to appear) · Zbl 1213.49049
[27] Hoffman D., Weber M. and Wolf M. (2005). An embedded genus-one helicoid. PNAS 102: 16566–16568 · doi:10.1073/pnas.0508008102
[28] Hoffman, D., White, B.: Genus-one helicoids from a variational point of view. Comment. Math. Helvetici (to appear) · Zbl 1161.53009
[29] Hsiang W. and Lawson H. (1971). Minimal submanifolds of low cohomogeneity. J. Differ. Geom. 5: 1–38 · Zbl 0219.53045
[30] Jorge L. and Xavier F. (1980). A complete minimal surface in R 3 between two parallel planes. Ann. Math. (2) 112(1): 203–206 · Zbl 0455.53004 · doi:10.2307/1971325
[31] Martin F. and Morales S. (2005). Complete proper minimal surfaces in convex bodies of R 3. Duke Math. J. 128(3): 559–593 · Zbl 1082.53009 · doi:10.1215/S0012-7094-04-12835-0
[32] Meeks W. (2004). Regularity of the singular set in the Colding–Minicozzi lamination theorem. Duke Math. J. 123(2): 329–334 · Zbl 1086.53005 · doi:10.1215/S0012-7094-04-12324-3
[33] Meeks W. (2005). The limit lamination metric for the Colding–Minicozzi minimal lamination. Illinois J. Math. 49(2): 645–658 · Zbl 1087.53058
[34] Meeks, W., Perez, J.: Conformal properties in classical minimal surface theory. Surveys in Differential Geometry, vol. IX, pp. 275–335, Surv. Differ. Geom., IX, Int. Press, Somerville, MA (2004) · Zbl 1086.53007
[35] Meeks W. and Rosenberg H. (2005). The uniqueness of the helicoid. Ann. Math. (2) 161(2): 727–758 · Zbl 1102.53005 · doi:10.4007/annals.2005.161.727
[36] Meeks, W., Weber, M.: Bending the helicoid, preprint (2005). http://arxiv.org/abs/math.DG/0511387 · Zbl 1156.53011
[37] Meeks W. and Yau S.T. (1982). The existence of embedded minimal surfaces and the problem of uniqueness. Math. Z. 179(2): 151–168 · Zbl 0479.49026 · doi:10.1007/BF01214308
[38] Morgan F. (2003). Regularity of isoperimetric hypersurfaces in Riemannian manifolds. Trans. Am. Math. Soc. 355(12): 5041–5052 · Zbl 1063.49031 · doi:10.1090/S0002-9947-03-03061-7
[39] Nadirashvili N. (1996). Hadamard’s and Calabi–Yau’s conjectures on negatively curved and minimal surfaces. Invent. Math. 126(3): 457–465 · Zbl 0881.53053 · doi:10.1007/s002220050106
[40] Osserman R. (1986). A Survey of Minimal Surfaces. Dover Publications Inc., New York · Zbl 0209.52901
[41] Perez, J.: Limits by rescalings of minimal surfaces: minimal laminations, curvature decay and local pictures. Notes for the workshop ”Moduli Spaces of Properly Embedded Minimal Surfaces”, American Institute of Mathematics, Palo Alto, CA (2005)
[42] Solomon B. and White B. (1989). A strong maximum principle for varifolds that are stationary with respect to even parametric elliptic functionals. Indiana J. Math. 38: 683–691 · Zbl 0711.49059 · doi:10.1512/iumj.1989.38.38032
[43] White B. (1991). The space of minimal submanifolds for varying Riemannian metrics. Indiana Univ. Math. J. 40(1): 161–200 · Zbl 0742.58009 · doi:10.1512/iumj.1991.40.40008
[44] White B. (1989). New applications of mapping degrees to minimal surface theory. J. Differ. Geom. 29(1): 143–162 · Zbl 0638.58005
[45] Yang P. and Yau S.T. (1980). Eigenvalues of the Laplacian of compact Riemann surfaces and minimal submanifolds. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 7(1): 55–63 · Zbl 0446.58017
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.