×

Index-analysis for a method of lines discretising multirate partial differential algebraic equations. (English) Zbl 1397.65169

Summary: In radio frequency applications, electric circuits generate signals, which are amplitude modulated and/or frequency modulated. A mathematical modelling typically yields systems of differential algebraic equations (DAEs). A multivariate signal model transforms the DAEs into multirate partial differential algebraic equations (MPDAEs). In the case of frequency modulation, an additional condition is required to identify an appropriate solution. We consider a necessary condition for an optimal solution and a phase condition. A method of lines, which discretises the MPDAEs as well as the additional condition, generates a larger system of DAEs. We analyse the differentiation index of this approximate DAE system, where the original DAEs are assumed to be semi-explicit systems. The index depends on the inclusion of either differential variables or algebraic variables in the additional condition. We present results of numerical simulations for an illustrative example, where the index is also verified by a numerical method.

MSC:

65M20 Method of lines for initial value and initial-boundary value problems involving PDEs
65L80 Numerical methods for differential-algebraic equations

Software:

RODAS

References:

[1] Bartel, A.; Knorr, S.; Pulch, R., Wavelet-based adaptive grids for multirate partial differential-algebraic equations, Appl. Numer. Math., 59, 495-506 (2009) · Zbl 1160.65334
[2] Bittner, K.; Brachtendorf, H. G., Adaptive multi-rate wavelet method for circuit simulation, Radioengineering, 23, 300-307 (2014)
[3] Bittner, K.; Brachtendorf, H. G., Optimal frequency sweep method in multi-rate circuit simulation, Compel, 33, 1189-1197 (2014) · Zbl 1358.94106
[4] Brenan, K. E.; Campbell, S. L.; Petzold, L. R., Numerical Solution of Initial-Value Problems in Differential-Algebraic Equations, Classics in Applied Mathematics (1996), SIAM, Society for Industrial and Applied Mathematics · Zbl 0844.65058
[5] Brachtendorf, H. G.; Welsch, G.; Laur, R.; Bunse-Gerstner, A., Numerical steady state analysis of electronic circuits driven by multi-tone signals, Electr. Eng., 79, 103-112 (1996)
[6] Brachtendorf, H. G.; Bunse-Gerstner, A.; Lang, B.; Lampe, S., Steady state analysis of electronic circuits by cubic and exponential splines, Electr. Eng., 91, 287-299 (2009)
[7] Estévez Schwarz, D.; Lamour, R., Diagnosis of singular points of structured DAEs using automatic differentiation, Numer. Algorithms, 69, 4, 667-691 (2015) · Zbl 1322.65082
[8] Estévez Schwarz, D.; Lamour, R., Diagnosis of singular points of properly stated DAEs using automatic differentiation, Numer. Algorithms, 70, 4, 777-805 (2015) · Zbl 1335.65067
[9] Estévez Schwarz, D.; Lamour, R., A new projector based decoupling of linear DAEs for monitoring singularities, Numer. Algorithms, 73, 2, 535-565 (2016) · Zbl 1351.65056
[10] Estévez Schwarz, D.; Lamour, R., A new approach for computing consistent initial values and Taylor coefficients for DAEs using projector-based constrained optimization, Numer. Algorithms (2017) · Zbl 1409.65049
[11] Estévez Schwarz, D.; Tischendorf, C., Structural analysis for electric circuits and consequences for MNA, Int. J. Circuit Theory Appl., 28, 131-162 (2000) · Zbl 1054.94529
[12] Greb, J.; Pulch, R., Simulation of quasiperiodic signals via warped MPDAEs using Houben’s approach, (Ciuprina, G.; Ioan, D., Scientific Computing in Electrical Engineering. Scientific Computing in Electrical Engineering, SCEE 2006. Scientific Computing in Electrical Engineering. Scientific Computing in Electrical Engineering, SCEE 2006, Mathematics in Industry, vol. 11 (2007), Springer: Springer Berlin), 237-243 · Zbl 1170.78440
[13] Griepentrog, E.; März, R., Differential-Algebraic Equations and their Numerical Treatment (1986), Teubner: Teubner Leipzig · Zbl 0629.65080
[14] Günther, M.; Feldmann, U., CAD based electric circuit modeling in industry I: mathematical structure and index of network equations, Surv. Math. Ind., 8, 97-129 (1999) · Zbl 0923.65039
[15] Hairer, E.; Nørsett, S. P.; Wanner, G., Solving Ordinary Differential Equations. Vol. 1: Nonstiff Problems (1993), Springer: Springer Berlin · Zbl 0789.65048
[16] Hairer, E.; Wanner, G., Solving Ordinary Differential Equations. Vol. 2: Stiff and Differential-Algebraic Equations (1996), Springer: Springer Berlin · Zbl 0859.65067
[17] Hämmerlin, G.; Hoffmann, K.-H., Numerical Mathematics (1991), Springer: Springer New York · Zbl 0709.65001
[18] Ho, C. W.; Ruehli, A.; Brennan, P. A., The modified nodal approach to network analysis, IEEE Trans. Circuits Syst. CAS, 22, 504-509 (1975)
[19] Houben, S. H.M. J., Circuits in Motion. The Numerical Simulation of Electrical Circuits (2003), Eindhoven University of Technology: Eindhoven University of Technology The Netherlands, PhD thesis
[20] Houben, S. H.M. J., Simulating multi-tone free-running oscillators with optimal sweep following, (Schilders, W. H.A.; ter Maten, E. J.W.; Houben, S. H.M. J., Scientific Computing in Electrical Engineering. Scientific Computing in Electrical Engineering, SCEE 2002. Scientific Computing in Electrical Engineering. Scientific Computing in Electrical Engineering, SCEE 2002, Mathematics in Industry, vol. 4 (2004), Springer: Springer Berlin), 240-247 · Zbl 1108.78011
[21] Kampowsky, W.; Rentrop, P.; Schmitt, W., Classification and numerical simulation of electric circuits, Surv. Math. Ind., 2, 23-65 (1992) · Zbl 0761.65059
[22] Knorr, S., Wavelet-Based Simulation of Multirate Partial Differential-Algebraic Systems in Radio Frequency Applications (2007), University of Wuppertal: University of Wuppertal Germany, Fortschritt-Berichte VDI, Series 20, No. 408
[23] Knorr, S.; Günther, M., Index analysis of multirate partial differential-algebraic systems in RF-circuits, (Anile, A. M.; Alì, G.; Mascali, G., Scientific Computing in Electrical Engineering. Scientific Computing in Electrical Engineering, SCEE 2004. Scientific Computing in Electrical Engineering. Scientific Computing in Electrical Engineering, SCEE 2004, Mathematics in Industry, vol. 9 (2006), Springer: Springer Berlin), 93-99 · Zbl 1157.94378
[24] Kugelmann, B.; Pulch, R., Existence and uniqueness of optimal solutions for multirate partial differential algebraic equations, Appl. Numer. Math., 97, 69-87 (2015) · Zbl 1329.65207
[25] Kunkel, P.; Mehrmann, V., Differential-Algebraic Equations: Analysis and Numerical Solution (2006), EMS: EMS Zürich · Zbl 0707.65043
[26] Lai, X.; Roychowdhury, J., Capturing oscillator injection locking via nonlinear phase-domain macromodels, IEEE Trans. Microw. Theory Tech., 52, 2251-2261 (2004)
[27] Lamour, R.; März, R.; Tischendorf, C., Differential-Algebraic Equations: A Projector Based Analysis, Differential-Algebraic Equations Forum 1 (2013), Springer: Springer Berlin · Zbl 1276.65045
[28] Narayan, O.; Roychowdhury, J., Analyzing oscillators using multitime PDEs, IEEE Trans. CAS I, 50, 7, 894-903 (2003) · Zbl 1368.35012
[29] Oliveira, J. F.; Pedro, J. C., Efficient RF circuit simulation using an innovative mixed time-frequency method, IEEE Trans. Microw. Theory Tech., 59, 4, 827-836 (2011)
[30] Pulch, R.; Günther, M., A method of characteristics for solving multirate partial differential equations in radio frequency applications, Appl. Numer. Math., 42, 1, 397-409 (2002) · Zbl 0999.65099
[31] Pulch, R., Multi time scale differential equations for simulating frequency modulated signals, Appl. Numer. Math., 53, 2-4, 421-436 (2005) · Zbl 1069.65103
[32] Pulch, R., Warped MPDAE models with continuous phase conditions, (Di Bucchianico, A.; Mattheij, R. M.M.; Peletier, M. A., Progress in Industrial Mathematics at ECMI 2004. Progress in Industrial Mathematics at ECMI 2004, Mathematics in Industry, vol. 8 (2006), Springer: Springer Berlin), 179-183 · Zbl 1308.94125
[33] Pulch, R.; Günther, M.; Knorr, S., Multirate partial differential algebraic equations for simulating radio frequency signals, Eur. J. Appl. Math., 18, 709-743 (2007) · Zbl 1135.94007
[34] Pulch, R., Multidimensional models for analysing frequency modulated signals, Math. Comput. Model. Dyn. Syst., 13, 4, 315-330 (2007) · Zbl 1126.65070
[35] Pulch, R., Initial-boundary value problems of warped MPDAEs including minimisation criteria, Math. Comput. Simul., 79, 2, 117-132 (2008) · Zbl 1153.65090
[36] Pulch, R., Variational methods for solving warped multirate partial differential algebraic equations, SIAM J. Sci. Comput., 31, 2, 1016-1034 (2008) · Zbl 1186.94278
[37] Pulch, R., Transformation qualities of warped multirate partial differential algebraic equations, (Breitner, M.; Denk, G.; Rentrop, P., From Nano to Space - Applied Mathematics Inspired by Roland Bulirsch (2008), Springer: Springer Berlin), 27-42 · Zbl 1162.35338
[38] Pulch, R.; Kugelmann, B., DAE-formulation for optimal solutions of a multirate model, Proc. Appl. Math. Mech., 15, 615-616 (2015)
[39] Roychowdhury, J., Analyzing circuits with widely-separated time scales using numerical PDE methods, IEEE Trans. CAS I, 48, 5, 578-594 (2001) · Zbl 1001.94060
[40] Tischendorf, C., Topological index calculation of differential-algebraic equations in circuit simulation, Surv. Math. Ind., 8, 187-199 (1999) · Zbl 1085.94513
[41] Zhu, L. L.; Christoffersen, C. E., Transient and steady-state analysis of nonlinear RF and microwave circuits, Special Issue on CMOS RF Circuits for Wireless Applications. Special Issue on CMOS RF Circuits for Wireless Applications, EURASIP J. Wirel. Commun. Netw., 2006, Article 32097 pp. (2006)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.