×

Bimodule structure of the mixed tensor product over \(\mathcal{U}_q s \ell(2 | 1)\) and quantum walled Brauer algebra. (English) Zbl 1381.81056

Summary: We study a mixed tensor product \(3^{\otimes m} \otimes \overline{3}^{\otimes n}\) of the three-dimensional fundamental representations of the Hopf algebra \(\mathcal{U}_q s \ell(2 | 1)\), whenever \(q\) is not a root of unity. Formulas for the decomposition of tensor products of any simple and projective \(\mathcal{U}_qs\ell(2|1)\)-module with the generating modules 3 and \(\overline{3}\) are obtained. The centralizer of \(\mathcal{U}_qs\ell(2|1)\) on the mixed tensor product is calculated. It is shown to be the quotient \(\mathsf{X}_{m, n}\) of the quantum walled Brauer algebra \(\mathsf{qw} \mathcal{B}_{m, n}\). The structure of projective modules over \(\mathsf{X}_{m, n}\) is written down explicitly. It is known that the walled Brauer algebras form an infinite tower. We have calculated the corresponding restriction functors on simple and projective modules over \(\mathsf{X}_{m,n}\). This result forms a crucial step in decomposition of the mixed tensor product as a bimodule over \(\mathsf{X}_{m,n} \boxtimes \mathcal{U}_qs\ell(2|1)\). We give an explicit bimodule structure for all \(m,n\).

MSC:

81R50 Quantum groups and related algebraic methods applied to problems in quantum theory
82B43 Percolation
17B37 Quantum groups (quantized enveloping algebras) and related deformations
82B20 Lattice systems (Ising, dimer, Potts, etc.) and systems on graphs arising in equilibrium statistical mechanics
16T05 Hopf algebras and their applications
16D20 Bimodules in associative algebras

References:

[1] Feigin, B. L.; Gainutdinov, A. M.; Semikhatov, A. M.; Tipunin, I. Yu., Modular group representations and fusion in logarithmic conformal field theories and in the quantum group center, Commun. Math. Phys., 265, 47-93 (2006) · Zbl 1107.81044
[2] Feigin, B. L.; Gainutdinov, A. M.; Semikhatov, A. M.; Tipunin, I. Yu., Logarithmic extensions of minimal models: characters and modular transformations, Nucl. Phys. B, 757, 303-343 (2006) · Zbl 1116.81059
[3] Fjelstad, J.; Fuchs, J.; Hwang, S.; Semikhatov, A. M.; Tipunin, I. Yu., Logarithmic conformal field theories via logarithmic deformations, Nucl. Phys. B, 633, 379-413 (2002) · Zbl 0995.81129
[4] Semikhatov, A. M.; Tipunin, I. Yu., The Nichols algebra of screenings, Commun. Contemp. Math., 14, Article 1250029 pp. (2012) · Zbl 1264.81285
[5] Lentner, S. D., Quantum groups and Nichols algebras acting on conformal field theories (2017) · Zbl 1461.81058
[6] Pearce, P.; Rasmussen, J.; Zuber, J.-B., Logarithmic minimal models, J. Stat. Mech. (2006) · Zbl 1456.81217
[7] Read, N.; Saleur, H., Enlarged symmetry algebras of spin chains, loop models, and S-matrices, Nucl. Phys. B, 777, 263-315 (2007) · Zbl 1200.81083
[8] Read, N.; Saleur, H., Associative-algebraic approach to logarithmic conformal field theories, Nucl. Phys. B, 777, 316 (2007) · Zbl 1200.81136
[9] Mathieu, Pierre; Ridout, D., From percolation to logarithmic conformal field theory, Phys. Lett. B, 657, 120-129 (2007) · Zbl 1246.81181
[10] Morin-Duchesne, A.; Rasmussen, J.; Ridout, D., Boundary algebras and Kac modules for logarithmic minimal models (2015) · Zbl 1331.81262
[11] Gainutdinov, A. M.; Read, N.; Saleur, H.; Vasseur, R., The periodic \(s l(2 | 1)\) alternating spin chain and its continuum limit as a bulk logarithmic conformal field theory at \(c = 0\), J. High Energy Phys., 1505 (2015) · Zbl 1388.81663
[12] Gainutdinov, A. M.; Vasseur, R., Lattice fusion rules and logarithmic operator product expansions, Nucl. Phys. B, 868, 223-270 (2013) · Zbl 1262.81160
[13] Di Francesco, Ph.; Mathieu, P.; Senechal, D., Conformal Field Theory (1997), Springer: Springer New York · Zbl 0869.53052
[14] Gainutdinov, A. M.; Read, N.; Saleur, H., Associative algebraic approach to logarithmic CFT in the bulk: the continuum limit of the \(g \ell(1 | 1)\) periodic spin chain, Howe duality and the interchiral algebra, Commun. Math. Phys., 341, 35 (2016) · Zbl 1333.81366
[15] Duplantier, B.; Saleur, H., Exact critical properties of two-dimensional dense self-avoiding walks, Nucl. Phys. B, 290, 291-326 (1987)
[16] Di Francesco, P.; Saleur, H.; Zuber, J. B., Critical Ising correlation functions in the plane and on the torus, Nucl. Phys. B, 290, 527-581 (1987)
[17] Cardy, J., Critical percolation in finite geometries, J. Phys. A, 25, L201-L206 (1992) · Zbl 0965.82501
[18] Ruelle, Ph., Logarithmic conformal invariance in the Abelian sandpile model, J. Phys. A, Math. Theor., 46, Article 494014 pp. (2013), 39 pp · Zbl 1280.81128
[19] Rasmussen, J.; Pearce, P., Fusion algebra of critical percolation, J. Stat. Mech., P09002 (2007) · Zbl 1456.81218
[20] Rasmussen, J.; Pearce, P., Fusion algebras of logarithmic minimal models, J. Phys. A, 40, Article 13711 pp. (2007) · Zbl 1129.81078
[21] Gainutdinov, A. M.; Saleur, H., Fusion and braiding in finite and affine Temperley-Lieb categories (2016)
[22] Baxter, R. J., Exactly Solved Models in Statistical Mechanics (1982), Academic Press · Zbl 0538.60093
[23] Gómez, C.; Ruiz-Altaba, M.; Sierra, G., Quantum Groups in Two-Dimensional Physics (1996), Cambridge University Press · Zbl 0885.17011
[24] Dubail, J.; Jacobsen, J. L.; Saleur, H., Conformal field theory at central charge \(c = 0\): a measure of the indecomposability (b) parameters, Nucl. Phys. B, 834, 399-422 (2010) · Zbl 1204.81154
[25] Vasseur, R.; Jacobsen, J. L.; Saleur, H., Indecomposability parameters in chiral logarithmic conformal field theory, Nucl. Phys. B, 851, 314-345 (2011) · Zbl 1229.81271
[26] Morin-Duchesne, A.; Saint-Aubin, Y., The Jordan structure of two dimensional loop models, J. Stat. Mech., 1104, Article P04007 pp. (2011) · Zbl 1456.82300
[27] Pearce, P.; Rasmussen, J.; Tartaglia, E., Logarithmic superconformal minimal models (2013) · Zbl 1292.82018
[28] Brankov, J.; Poghosyan, V.; Priezzhev, V.; Ruelle, P., Transfer matrix for spanning trees, webs and colored forests, J. Stat. Mech., 2014, Article P09031 pp. (2014) · Zbl 1456.81195
[29] Gainutdinov, A. M.; Nepomechie, R. I., Algebraic Bethe ansatz for the quantum group invariant open XXZ chain at roots of unity (2016) · Zbl 1342.82030
[30] Feigin, B. L.; Gainutdinov, A. M.; Semikhatov, A. M.; Tipunin, I. Yu., Teor. Mat. Fiz., 148, 398-427 (2006) · Zbl 1177.17012
[31] Feigin, B. L.; Gainutdinov, A. M.; Semikhatov, A. M.; Tipunin, I. Yu., Kazhdan-Lusztig-dual quantum group for logarithmic extensions of Virasoro minimal models, J. Math. Phys., 48, Article 032303 pp. (2007) · Zbl 1112.17017
[32] Semikhatov, A. M.; Tipunin, I. Yu., Logarithmic \(\hat{s \ell(2)}\) CFT models from Nichols algebras. 1, J. Phys. A, Math. Theor., 46, Article 494011 pp. (2013) · Zbl 1283.81113
[33] Gaberdiel, M. R.; Kausch, H. G., A rational logarithmic conformal field theory, Phys. Lett. B, 386, 131 (1996)
[34] Fuchs, J.; Hwang, S.; Semikhatov, A. M.; Tipunin, I. Yu., Nonsemisimple fusion algebras and the Verlinde formula, Commun. Math. Phys., 247, 713-742 (2004) · Zbl 1063.81062
[35] Adamovic, D.; Milas, A., Logarithmic intertwining operators and \(W(2, 2 p - 1)\)-algebras, J. Math. Phys., 48, Article 073503 pp. (2007) · Zbl 1144.81302
[36] Adamovic, D.; Milas, A., On the triplet vertex algebra \(W(p)\), Adv. Math., 217, 2664-2699 (2008) · Zbl 1177.17017
[37] Gainutdinov, A. M.; Saleur, H.; Tipunin, I. Yu., Lattice W-algebras and logarithmic CFTs, J. Phys. A, Math. Theor., 47, Article 495401 pp. (2014) · Zbl 1305.81123
[38] Candu, C., Continuum limit of \(g \ell(M | N)\) spin chains, J. High Energy Phys., 1107, Article 069 pp. (2011) · Zbl 1298.81223
[39] Links, J.; Foerster, A., Integrability of a t-J model with impurities, J. Phys. A, Gen. Phys., 32, 1 (1998) · Zbl 1073.82542
[40] Abad, J.; Rios, M., Exact solution of a electron system combining two different t-J models, J. Phys. A, Math. Gen., 32, 19 (1999) · Zbl 1026.82535
[41] Fei, S.-M.; Yue, R.-H., Generalized t-J model, J. Phys. A, Math. Gen., 27, 3715 (1994)
[42] Creutzig, T.; Ridout, D., Modular data and Verlinde formulae for fractional level WZW models, I (2012) · Zbl 1262.81157
[43] Creutzig, T.; Ridout, D., Modular data and Verlinde formulae for fractional level WZW models, II (2013) · Zbl 1282.81158
[44] Ridout, D.; Wood, S., Relaxed singular vectors, Jack symmetric functions and fractional level \(\hat{s l}(2)\) models (2013)
[45] Bushlanov, P. V.; Gainutdinov, A. M.; Tipunin, I. Yu., Kazhdan-Lusztig equivalence and fusion of Kac modules in Virasoro logarithmic models, Nucl. Phys. B, 862 (2012) · Zbl 1246.81316
[46] Essler, F. H.L.; Frahm, H.; Saleur, H., Continuum limit of the integrable \(s \ell(2 | 1)3 - \overline{3}\) superspin chain, Nucl. Phys. B, 712, 513-572 (2005) · Zbl 1109.81333
[47] Frahm, H.; Martins, M. J., Finite size properties of staggered \(U_q s \ell(2 | 1)\) superspin chains, Nucl. Phys. B, 847, 220-246 (2011) · Zbl 1208.82007
[48] Frahm, H.; Martins, M. J., Phase diagram of an integrable alternating \(U_q s \ell(2 | 1)\) superspin chain, Nucl. Phys. B, 862 [FS], 504-552 (2012) · Zbl 1246.82016
[49] Shader, C. L.; Moon, D., Mixed tensor representations and rational representations for the general linear Lie superalgebras, Commun. Algebra, 30, 2, 839-857 (2002) · Zbl 1035.17013
[50] Dipper, R.; Doty, S.; Stoll, F., The quantized walled Brauer algebra and mixed tensor space, Algebr. Represent. Theory, 17, 675 (2014) · Zbl 1368.17017
[51] Dipper, R.; Doty, S.; Stoll, F., Quantized mixed tensor space and Schur-Weyl duality, Algebra Number Theory, 7, 1121-1146 (2013) · Zbl 1290.17012
[52] Brundan, J.; Stroppel, C., Gradings on walled Brauer algebras and Khovanov’s arc algebra, Adv. Math., 231, 2, 709-773 (2012) · Zbl 1326.17006
[53] Leduc, R., A Two-Parameter Version of the Centralizer Algebra of the Mixed Tensor Representation of the General Linear Group and Quantum General Linear Group (1994), University of Wisconsin-Madison, Thesis
[54] Halverson, T., Characters of the centralizer algebras of mixed tensor representations of \(G L(r, C)\) and the quantum group \(U_q(g \ell(r, C))\), Pac. J. Math., 174, 259-410 (1996) · Zbl 0871.17010
[55] Kosuda, M.; Murakami, J., Centralizer algebras of the mixed tensor representations of quantum group \(U_q g \ell(m, C)\), Osaka J. Math., 30, 475-507 (1993) · Zbl 0806.17012
[56] Enyang, J., Cellular bases of the two-parameter version of the centraliser algebra for the mixed tensor representations of the quantum general linear group, (Combinatorial Representation Theory and Related Topics, vol. 1310. Combinatorial Representation Theory and Related Topics, vol. 1310, Kyoto, 2002 (2003)), 134-153
[57] Cox, A.; De Visscher, M.; Doty, S.; Martin, P., On the blocks of the walled Brauer algebra, J. Algebra, 320, 169-212 (2008) · Zbl 1196.20004
[58] Cox, A.; De Visscher, M., Diagrammatic Kazhdan-Lusztig theory for the (walled) Brauer algebra, J. Algebra, 340, 1 (2011) · Zbl 1269.20037
[59] Dlab, V.; Ringel, C. M., The module theoretical approach to quasi-hereditary algebras, (Tachikawa, H.; Brenner, S., Representations of Algebras and Related Topics. Representations of Algebras and Related Topics, London Mathematical Society Lecture Note Series, vol. 168 (1992), Cambridge Univ. Press: Cambridge Univ. Press Cambridge), 200-224 · Zbl 0793.16006
[60] Erdmann, K.; Parker, A. E., On the global and ∇-filtration dimensions of quasi-hereditary algebras, J. Pure Appl. Algebra, 194 (2004) · Zbl 1062.16007
[61] Rui, H.; Song, L., The representations of quantized walled Brauer algebras (2014)
[62] Rui, H.; Song, L., Decomposition numbers of quantized walled Brauer algebras (2014)
[63] Semikhatov, A. M.; Tipunin, I. Yu., Quantum walled Brauer algebra: commuting families, baxterization, and representations · Zbl 1419.20004
[64] Sartori, A.; Stroppel, C., Walled Brauer algebras as idempotent truncations of level 2 cyclotomic quotients (2014)
[65] Palev, T. D.; Tolstoy, V. N., Finite dimensional irreducible representations of the quantum superalgebra \(U_q g \ell(n | 1)\), Commun. Math. Phys., 141 (1991) · Zbl 0744.17016
[66] Palev, T. D.; Stoilova, N. I.; Van der Jeugt, J., Finite-dimensional representations of the quantum superalgebra \(U_q g \ell(n | m)\) and related q-identities, Commun. Math. Phys., 166 (1994) · Zbl 0853.17016
[67] Zhang, R. B., Finite dimensional irreducible representations of the quantum supergroup \(U_q g \ell(m | n)\), J. Math. Phys., 34, 3 (1993) · Zbl 0784.17029
[68] Ky, Nguyen Anh; thi Hong Van, Nguyen, Finite-dimensional representations of \(U_q g \ell(2 | 1)\) in a basis of \(U_q [g \ell(2) \oplus g \ell(1)]\), Adv. Nat. Sci., 5, 1 (2004)
[69] Su, Yucai, Classification of finite dimensional modules of the Lie superalgebra \(s \ell(2 | 1)\), Commun. Algebra, 20, 11, 3259-3277 (1992) · Zbl 0768.17003
[70] Semikhatov, A. M.; Tipunin, I. Yu., Representations of \(\overline{U}_q s \ell(2 | 1)\) at even roots of unity, J. Math. Phys., 57, 2 (2016) · Zbl 1335.81096
[71] Maclane, S., Homology (1963), Springer-Verlag · Zbl 0133.26502
[72] Gotz, Gerhard; Quella, Thomas, Volker Schomerus, Representation theory of \(s \ell(2 | 1)\), J. Algebra, 312, 2 (2007) · Zbl 1180.17009
[73] Shader, C. L.; Moon, D., Mixed tensor representations of quantum superalgebra \(U_q g \ell(m, n)\), Commun. Algebra, 35, 3, 781-806 (2007) · Zbl 1155.17005
[74] Stoll, F.; Werth, M., A cell filtration of mixed tensor space (2014) · Zbl 1382.16010
[75] Comes, J.; Wilson, B., Deligne’s category Rep \((G L_\delta )\) and representations of general linear supergroups
[76] Heidersdorf, T., Mixed tensors of the general linear supergroup, J. Algebra, 491 (2014) · Zbl 1420.17008
[77] Assem, I.; Simson, D.; Skowronski, A., Elements of the Representation Theory of Associative Algebras, Volume 1: Techniques of Representation Theory, London Mathematical Society Student Texts, vol. 65 (2006), Cambridge University Press · Zbl 1092.16001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.