×

A shape preserving corner cutting algorithm with an enhanced accuracy. (English) Zbl 1524.65088

Summary: The class of order-3 exponential B-spline subdivision schemes is a natural extension of Chaikin’s corner cutting algorithm. However, order-3 exponential B-spline subdivision schemes can provide at most the approximation order ‘two’ (when a suitable normalization parameter is applied) and generally do not guarantee the monotonicity or convexity preserving properties. To overcome these limitations, this study aims to present an improved shape preserving non-uniform corner cutting (SPNC) subdivision algorithm by generalizing the subdivision of an order-3 exponential B-spline reproducing two exponential polynomials. Each refinement rule of the SPNC scheme has an internal shape parameter. We propose a method for selecting a locally-optimized parameter and then formulate it on the construction of refinement rules. Accordingly, the proposed SPNC scheme achieves an improved approximation order three, while retaining the convexity as well as monotonicity preservation properties under some mild conditions. The proposed algorithm generates \(C^1\) limit functions like Chaikin’s corner cutting method. To validate the effectiveness of the SPNC algorithm, several numerical examples are presented.

MSC:

65D17 Computer-aided design (modeling of curves and surfaces)
65D07 Numerical computation using splines
65D18 Numerical aspects of computer graphics, image analysis, and computational geometry
Full Text: DOI

References:

[1] Dyn, N., Subdivision Schemes in Computer-Aided Geometric Design, Advances in Numerical Analysis II: Wavelets, Subdivision Algorithms and Radial Basis Functions (W.a. Light Ed.), 36-104 (1992), Oxford University Press · Zbl 0760.65012
[2] Dyn, N.; Levin, D., Analysis of asymptotically equivalent binary subdivision schemes, J. Math. Anal. Appl., 193, 594-621 (1995) · Zbl 0836.65012
[3] Chaikin, G. M., An algorithm for high speed curve generation, Comput. Vis. Graph. Image Process., 3, 346-349 (1974)
[4] Deslauriers, G.; Dubuc, S., Symmetric iterative interpolation, Constr. Approx., 5, 49-68 (1989) · Zbl 0659.65004
[5] Dyn, N.; Gregory, J. A.; Levin, D., A four-point interpolatory subdivision scheme for curve design, Comp. Aided Geom. Des., 4, 257-268 (1987) · Zbl 0638.65009
[6] Beccari, C.; Casciola, G.; Romani, L., A non-stationary uniform tension controlled interpolating 4-point scheme reproducing conics, Comput. Aided Geom. Des., 24, 1-9 (2007) · Zbl 1171.65325
[7] Charina, M.; Conti, C.; Romani, L., Reproduction of exponential polynomials by multivariate non-stationary subdivision schemes with a general dilation matrix, Numer. Math., 127, 2, 223-254 (2014) · Zbl 1295.65018
[8] Charina, M.; Conti, C.; Sauer, T., Regularity of multivariate vector subdivision schemes, Numer. Algorithms, 39, 97-113 (2005) · Zbl 1071.65019
[9] Dyn, N.; Levin, D.; Yoon, J., A new method for the analysis of univariate nonuniform subdivision schemes, Constr. Approx., 40, 173-188 (2014) · Zbl 1308.65020
[10] Donat, R.; Yáñez, D. F., A nonlinear Chaikin-based binary subdivision scheme, J. Comput. Appl. Math., 349, 379-389 (2019) · Zbl 1528.65013
[11] Yang, H.; Yoon, J., A shape preserving \(C^2\) non-linear, non-uniform, subdivision scheme with fourth-order accuracy, Appl. Comput. Harmon. Anal., 60, 267-292 (2022) · Zbl 1512.41004
[12] de Boor, C., Cutting corners always works, Comput. Aided Geom. Des., 4, 125-131 (1987) · Zbl 0637.41014
[13] de Rham, G., Sur une courbe plane, J. Math. Pures Appl., 35, 9, 25-42 (1956) · Zbl 0070.39101
[14] Beccari, C.; Casciola, G.; Mazure, M.-L., Dimension elevation is not always corner-cutting, Appl. Math. Lett., 109, Article 106529 pp. (2020) · Zbl 1450.65011
[15] Conti, C.; Romani, L., Dual univariate \(m\)-ary subdivision schemes of de Rham-type, J. Math. Anal. Appl., 407, 443-456 (2013) · Zbl 1306.65163
[16] Conti, C.; Dyn, N.; Romani, L., Convergence analysis of corner cutting algorithms refining nets of functions, Math. Comput. Simulation, 176, 134-146 (2020) · Zbl 1510.65043
[17] Gregory, J. A.; Qu, R., Nonuniform corner cutting, Comput. Aided Geom. Des., 13, 763-772 (1996) · Zbl 0900.68411
[18] Mainar, E.; Peña, J. M., Corner cutting algorithms associated with optimal shape preserving representations, Comput. Aided Geom. Des., 16, 883-906 (1999) · Zbl 0997.65025
[19] Romani, L., A Chaikin-based variant of Lane-Riesenfeld algorithm and its non-tensor product extension, Comput. Aided Geom. Des., 32, 22-49 (2015) · Zbl 1417.65108
[20] Siddiqi, S.; Rehan, K., Improved binary four point subdivision scheme and new corner cutting scheme, Comput. Math. Appl., 59, 2647-2657 (2010) · Zbl 1193.65015
[21] Tian, Y.; Pan, M., Corner-cutting subdivision surfaces of general degrees with parameters, J. Comput. Math., 38, 5, 710-725 (2020)
[22] Unser, M.; Blu, T., Cardinal exponential splines: Part I-Theory and filtering algorithms, IEEE Trans. Signal Process., 53, 1425-1438 (2005) · Zbl 1370.94262
[23] Jeong, B.; Yang, H.; Yoon, J., A non-uniform corner-cutting subdivision scheme with an improved accuracy, J. Comput. Appl. Math., 391, Article 113446 pp. (2021) · Zbl 1459.41002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.