×

An element-based homogenized model for nonlinear wave interaction with 2D distributed microcracks. (English) Zbl 1518.74043

Summary: Interests in using nonlinear acoustic methods for incipient damage detection continue to grow tremendously as the understanding of nonlinearities in micro-cracked and cracked solids. It is widely known that nonlinear effects caused by cracks are stronger than crack-induced linear phenomena. However, understanding physical mechanisms related to various nonlinearities still needs to be clarified, which is vital to implementing nonlinear ultrasonics for engineering applications. To this end, an element-based homogenized method is proposed, which can consider the randomness of distributed microcracks in the framework of continuum mechanics. A quadrilateral element with one horizontal crack is constructed as a reference model. The reference model is homogenized to be orthotropic but with different moduli in tension and compression to account for stiffness asymmetric due to crack opening and closing. Unlike the existing homogenized method, which usually simplifies the representative volume element as a homogeneous part and requires only one constitutive model for the equivalent material of the whole structure, we assign the constitutive relationship of the same reference model to all the finite elements but with random principal material directions to take randomly oriented microcracks into consideration. The proposed method is compared with the finite element contact model that defines contact properties on crack surfaces. It is validated that the proposed method agrees well with the contact model for simulating the nonlinearities in wave interaction with the microcracks but at a much lower computational cost.

MSC:

74J30 Nonlinear waves in solid mechanics
74J25 Inverse problems for waves in solid mechanics
74R10 Brittle fracture
74M25 Micromechanics of solids
74Q15 Effective constitutive equations in solid mechanics
74S05 Finite element methods applied to problems in solid mechanics
Full Text: DOI

References:

[1] Wang, Z.; Fan, Z.; Chen, X.; Kang, Y.; Cheng, J.; Cheng, W., Modeling and experimental analysis of roughness effect on ultrasonic nondestructive evaluation of micro-crack, Chin J Mech Eng, 34, 1, 114 (2021) · doi:10.1186/s10033-021-00637-5
[2] Da, Y.; Wang, B.; Qian, Z., Noise processing of flaw reconstruction by wavelet transform in ultrasonic guided SH waves, Meccanica, 52, 10, 2307-2328 (2017) · Zbl 1427.70043 · doi:10.1007/s11012-016-0581-1
[3] Meglis, IL; Chow, T.; Martin, CD; Young, RP, Assessing in situ microcrack damage using ultrasonic velocity tomography, Int J Rock Mech Min Sci, 42, 1, 25-34 (2005) · doi:10.1016/j.ijrmms.2004.06.002
[4] Zhang, C.; Zhang, Z.; Ji, H.; Qiu, J.; Tao, C., Mode conversion behavior of guided wave in glass fiber reinforced polymer with fatigue damage accumulation, Compos Sci Technol, 192, 108, 073 (2020) · doi:10.1016/j.compscitech.2020.108073
[5] Lee, SE; Lim, HJ; Jin, S.; Sohn, H.; Hong, JW, Micro-crack detection with nonlinear wave modulation technique and its application to loaded cracks, NDT E Int, 107, 102, 132 (2019) · doi:10.1016/j.ndteint.2019.102132
[6] Zhou, C.; Hong, M.; Su, Z.; Wang, Q.; Cheng, L., Evaluation of fatigue cracks using nonlinearities of acousto-ultrasonic waves acquired by an active sensor network, Smart Mater Struct (2013) · doi:10.1088/0964-1726/22/1/015018
[7] Broda, D.; Staszewski, W.; Martowicz, A.; Uhl, T.; Silberschmidt, VV, Modelling of nonlinear crack-wave interactions for damage detection based on ultrasound-a review, J Sound Vib, 333, 4, 1097-1118 (2014) · doi:10.1016/j.jsv.2013.09.033
[8] Budiansky, B.; O’connell, RJ, Elastic moduli of a cracked solid, Int J Solids Struct, 12, 2, 81-97 (1976) · Zbl 0318.73065 · doi:10.1016/0020-7683(76)90044-5
[9] Horii, H.; Nemat-Nasser, S., Overall moduli of solids with microcracks: load-induced anisotropy, J Mech Phys Solids, 31, 2, 155-171 (1983) · Zbl 0506.73097 · doi:10.1016/0022-5096(83)90048-0
[10] Laws, N.; Brockenbrough, JR, The effect of micro-crack systems on the loss of stiffness of brittle solids, Int J Solids Struct, 23, 9, 1247-1268 (1987) · doi:10.1016/0020-7683(87)90104-1
[11] Kachanov, M., Effective elastic properties of cracked solids: critical review of some basic concepts, Appl Mech Rev, 45, 8, 304-335 (1992) · doi:10.1115/1.3119761
[12] Xing, C.; Wang, Y.; Waisman, H., Fracture analysis of cracked thin-walled structures using a high-order XFEM and Irwin’s integral, Comput Struct, 212, 1-19 (2019) · doi:10.1016/j.compstruc.2018.10.010
[13] Liu, G.; Zhou, D.; Guo, J.; Bao, Y.; Han, Z.; Lu, J., Numerical simulation of fatigue crack propagation interacting with micro-defects using multiscale XFEM, Int J Fatigue, 109, 70-82 (2018) · doi:10.1016/j.ijfatigue.2017.12.012
[14] Steinbach, I., Phase-field models in materials science, Model Simul Mater Sci Eng (2009) · doi:10.1088/0965-0393/17/7/073001
[15] Seleš K, Tomi š Z, Tonkovi ŠZ, (2021) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Eng Fract Mech 255(107):973. doi:10.1016/j.engfracmech.2021.107973
[16] Gomez Q, Ionescu IR, Ciobanu O (2017) Discontinuous Galerkin method in modeling materials with micro-Cracks. Poromechanics VI 1532-1539. doi:10.1061/9780784480779.190
[17] A. Cemal E (1999) Microcontinuum field theories: I. foundations and solids. Springer Sci Business Media · Zbl 0953.74002
[18] Pau, A.; Trovalusci, P., A multifield continuum model for the description of the response of microporous/microcracked composite materials, Mech Mater, 160, 103, 965 (2021) · doi:10.1016/j.mechmat.2021.103965
[19] Solodov, IY; Krohn, N.; Busse, G., CAN: an example of nonclassical acoustic nonlinearity in solids, Ultrasonics, 40, 1, 621-625 (2002) · doi:10.1016/S0041-624X(02)00186-5
[20] Zhao, Y.; Xu, Y.; Chen, Z.; Cao, P.; Hu, N., Detection and characterization of randomly distributed micro-cracks in elastic solids by one-Way collinear mixing method, J Nondestruct Eval (2018) · doi:10.1007/s10921-018-0505-1
[21] Jhang, KY, Nonlinear ultrasonic techniques for nondestructive assessment of micro damage in material: A review, Int J Precis Eng Manuf, 10, 1, 123-135 (2009) · doi:10.1007/s12541-009-0019-y
[22] Richardson, JM, Harmonic generation at an unbonded interface-I. Planar interface between semi-infinite elastic media, Int J Eng Sci, 17, 1, 73-85 (1979) · Zbl 0392.73016 · doi:10.1016/0020-7225(79)90008-9
[23] Hirose, S.; Achenbach, JD, Higher harmonics in the far field due to dynamic crack-face contacting, J Acoust Soc Am, 93, 1, 142-147 (1993) · doi:10.1121/1.405651
[24] Biwa, S.; Nakajima, S.; Ohno, N., On the Acoustic Nonlinearity of Solid-Solid Contact With Pressure-Dependent Interface Stiffness, J Appl Mech, 71, 4, 508-515 (2004) · Zbl 1111.74329 · doi:10.1115/1.1767169
[25] Blanloeuil, P.; Meziane, A.; Bacon, C., Numerical study of nonlinear interaction between a crack and elastic waves under an oblique incidence, Wave Motion, 51, 3, 425-437 (2014) · Zbl 1456.74095 · doi:10.1016/j.wavemoti.2013.10.002
[26] Ding, X.; Zhao, Y.; Deng, M.; Shui, G.; Hu, N., One-way Lamb mixing method in thin plates with randomly distributed micro-cracks, Int J Mech Sci, 171, 105, 371 (2020) · doi:10.1016/j.ijmecsci.2019.105371
[27] Gomez, Q.; Ciobanu, O.; Ionescu, IR, Numerical modeling of wave propagation in a cracked solid, Math Mech Solids, 24, 9, 2895-2913 (2019) · Zbl 07273344 · doi:10.1177/1081286518821407
[28] Worden, K., Nonlinearity in structural dynamics: detection, identification and modelling, CRC Press (2019) · doi:10.1201/9780429138331
[29] Friswell, MI; Penny, JET, Crack modeling for structural health monitoring, Struct Health Monit, 1, 2, 139-148 (2002) · doi:10.1177/1475921702001002002
[30] Lee, U.; Lesieutre, GA; Fang, L., Anisotropic damage mechanics based on strain energy equivalence and equivalent elliptical microcracks, Int J Solids Struct, 34, 33, 4377-4397 (1997) · Zbl 0942.74637 · doi:10.1016/S0020-7683(97)00022-X
[31] May, A.; Belouchrani, MA; Manaa, A.; Bouteghrine, Y., Influence of fatigue damage on the mechanical behaviour of 2024-T3 aluminum alloy, Procedia Eng, 10, 798-806 (2011) · doi:10.1016/j.proeng.2011.04.132
[32] Yin, J.; Wei, Q.; Zhu, L.; Han, M., Nonlinear frequency mixing of Lamb wave for detecting randomly distributed microcracks in thin plates, Wave Motion, 99, 102, 663 (2020) · Zbl 1524.74221 · doi:10.1016/j.wavemoti.2020.102663
[33] Lee, U.; Cho, K.; Shin, J., Identification of orthotropic damages within a thin uniform plate, Int J Solids Struct, 40, 9, 2195-2213 (2003) · Zbl 1049.74041 · doi:10.1016/S0020-7683(03)00055-6
[34] Xia, Z.; Zhang, Y.; Ellyin, F., A unified periodical boundary conditions for representative volume elements of composites and applications, Int J Solids Struct, 40, 8, 1907-1921 (2003) · Zbl 1048.74011 · doi:10.1016/S0020-7683(03)00024-6
[35] Marburg, S., Discretization requirements: how many elements per wavelength are necessary?, Computational Acoustics of Noise Propagation in Fluids-Finite and Boundary Element Methods (2008) · doi:10.1007/978-3-540-77448-8_12
[36] Moser, F.; Jacobs, LJ; Qu, J., Modeling elastic wave propagation in waveguides with the finite element method, NDT E Int, 32, 4, 225-234 (1999) · doi:10.1016/S0963-8695(98)00045-0
[37] Hong, M.; Su, Z.; Wang, Q.; Cheng, L.; Qing, X., Modeling nonlinearities of ultrasonic waves for fatigue damage characterization: Theory, simulation, and experimental validation, Ultrasonics, 54, 3, 770-778 (2014) · doi:10.1016/j.ultras.2013.09.023
[38] Müller, MF; Kim, JY; Qu, J.; Jacobs Laurence, J., Characteristics of second harmonic generation of Lamb waves in nonlinear elastic plates, J Acoust Soc Am, 127, 4, 2141-2152 (2010) · doi:10.1121/1.3294714
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.