×

Nonlinear frequency mixing of Lamb wave for detecting randomly distributed microcracks in thin plates. (English) Zbl 1524.74221

Summary: In engineering practice, the microcracks usually generate during the initial period of fatigue, and randomly distribute in the metallic structure. It is great challenge for linear non-destructive testing methods to detect those microscopic damages. In this work, the numerical simulations on nonlinear interaction between Lamb wave and microcracks are performed to investigate the behavior of frequency mixing in aluminum plates. From the simulation results, the nonlinear parameter based upon sum frequency shows a monotonically increase with the length of microcracks, and a monotonically decrease with the width of microcracks. The distribution area and density of the cracks also affect the nonlinear interactions between Lamb wave and microcracks. This work theoretically demonstrates that the nonlinear frequency mixing method is a robust strategy to detect microcracks at the initial fatigue stage in metal plates.

MSC:

74J10 Bulk waves in solid mechanics
35L75 Higher-order nonlinear hyperbolic equations
35Q74 PDEs in connection with mechanics of deformable solids
Full Text: DOI

References:

[1] Jhang, K. Y., Nonlinear ultrasonic techniques for nondestructive assessment of micro damage in material: a review, Int. J. Precis. Eng. Man., 10, 1, 123-135 (2009)
[2] Duchene, P.; Chaki, S.; Ayadi, A.; Krawczak, P., A review of non-destructive techniques used for mechanical damage assessment in polymer composites, J. Mater. Sci., 53, 11, 7915-7938 (2018)
[3] Lu, Q. Y.; Wong, C. H., Applications of non-destructive testing techniques for post-process control of additively manufactured parts, Virtual. Phys. Prototy., 12, 1, 1-21 (2017)
[4] Sardar, K. U.R.; Ibrahim, Z.; Memon, S. A.; Jameel, M., Nondestructive test methods for concrete bridges: a review, Constr. Build. Mater., 107, 58-86 (2016)
[5] Wang, X.; Wang, X.; Hu, X.; Chi, Y.; Xiao, D., Damage assessment in structural steel subjected to tensile load using nonlinear and linear ultrasonic techniques, Appl. Acoust., 144, 40-50 (2019)
[6] Wan, X.; Zhang, Q.; Xu, G.; Tse, P. W., Numerical simulation of nonlinear lamb waves used in a thin plate for detecting buried microcracks, Sensors, 14, 5, 8528-8546 (2014)
[7] Wang, R.; Wu, Q.; Yu, F. M.; Okabe, Y.; Xiong, K., Nonlinear ultrasonic detection for evaluating fatigue crack in metal plate, Struct. Health. Monit., 18, 3, 869-881 (2019)
[8] Bermes, C.; Kim, J. Y.; Qu, J.; Jacobs, L. J., Experimental characterization of material nonlinearity using Lamb waves, Appl. Phys. Lett., 90, 2 (2007), 021901-021901-3
[9] Li, W.; Cho, Y.; Achenbach, J. D., Detection of thermal fatigue in composites by second harmonic Lamb waves, Smart. Mater. Struct., 21, 8, 85-93 (2012)
[10] S.M. Hogg, B.E. Anderson, P.Y. Le Bas, M.C. Remillieux, Nonlinear resonant ultrasound spectroscopy of stress corrosion cracking in stainless steel rods, 102 (2019) 194-198.
[11] A. Novak, M. Bentahar, V. Tournat, R.E. Guerjouma, L. Simon, Nonlinear acoustic characterization of micro-damaged materials through higher harmonic resonance analysis, 45(1) (2012) 1-8.
[12] Donskoy, D.; Sutin, A.; Ekimov, A., Nonlinear acoustic interaction on contact interfaces and its use for nondestructive testing, NDT & E. Int., 34, 4, 231-238 (2001)
[13] Hu, H. F.; Staszewski, W. J.; Hu, N. Q.; Jenal, R. B.; Qin, G. J., Crack detection using nonlinear acoustics and piezoceramic transducers-instantaneous amplitude and frequency analysis, Smart. Mater. Struct., 19, 6, Article 065017 pp. (2010)
[14] Metya, A. K.; Tarafder, S.; Balasubramaniam, K., Nonlinear Lamb wave mixing for assessing localized deformation during creep, NDT & E. Int., 98, 89-94 (2018)
[15] Cho, H.; Hasanian, M.; Shan, S.; Lissenden, C. J., Nonlinear guided wave technique for localized damage detection in plates with surface-bonded sensors to receive Lamb waves generated by shear-horizontal wave mixing, NDT & E. Int., 102, 35-46 (2019)
[16] Sun, M.; Xiang, Y.; Deng, M.; Tang, B.; Zhu, W.; Xuan, F., Experimental and numerical investigations of nonlinear interaction of counter-propagating Lamb waves, Appl. Phys. Lett., 114, 1, Article 011902 pp. (2019)
[17] Broda, D.; Staszewski, W. J.; Martowicz, A.; Uhl, T.; Silberschmidt, V. V., Modelling of nonlinear crack-wave interactions for damage detection based on ultrasound-a review, J. Sound. Vib., 333, 4, 1097-1118 (2014)
[18] Marcantonio, V.; Monarca, D.; Colantoni, A.; Cecchini, M., Ultrasonic waves for materials evaluation in fatigue, thermal and corrosion damage: a review, Mech. Syst. Signal. Pr., 120, 32-42 (2019)
[19] Liu, M.; Tang, G.; Jacobs, L. J.; Qu, J., Measuring acoustic nonlinearity parameter using collinear wave mixing, J. Appl. Phys., 112, 2, Article 024908 pp. (2012)
[20] Joglekar, D. M.; Mitra, M., Time domain analysis of nonlinear frequency mixing in a slender beam for localizing a breathing crack, Smart. Mater. Struct., 26, 2, Article 025009 pp. (2017)
[21] Lv, H.; Jiao, J.; Wu, B.; He, C., Evaluation of fatigue crack orientation using non-collinear shear wave mixing method, J. Nondestruct. Eval., 37, 4, 74 (2018)
[22] Zhao, Y.; Xu, Y.; Chen, Z.; Cao, P.; Hu, N., Detection and characterization of randomly distributed microcracks in elastic solids by one-way collinear mixing method, J. Nondestruct. Eval., 37, 3, 47-55 (2018)
[23] Mitra, M.; Gopalakrishnan, S., Guided wave based structural health monitoring: a review, Smart. Mater. Struct., 25, 5, Article 053001 pp. (2016)
[24] Jiao, J.; Meng, X.; He, C.; Wu, B., Nonlinear lamb wave-mixing technique for microcrack detection in plates, NDT & E. Int., 85, 63-71 (2017)
[25] Lee, D. J.; Cho, Y.; Li, W., A feasibility study for lamb wave mixing nonlinear technique, AIP Conf. Proc., 1581, 662-666 (2015)
[26] Ding, X.; Li, F.; Zhao, Y.; Xu, Y.; Hu, N.; Cao, P.; Deng, M., Generation mechanism of nonlinear rayleigh surface waves for randomly distributed surface microcracks, Materials, 11, 4, 644-657 (2018)
[27] Zhao, Y.; Li, F.; Cao, P.; Liu, Y.; Zhang, J.; Fu, S.; Zhang, J.; Hu, N., Generation mechanism of nonlinear ultrasonic lamb waves in thin plates with randomly distributed microcracks, Ultrasonics, 79, 60-67 (2017)
[28] Jiao, J.; Sun, J.; Li, G.; Wu, B.; He, C., Evaluation of the intergranular corrosion in austenitic stainless steel using collinear wave mixing method, NDT & E. Int., 69, 1-8 (2015)
[29] Kozlovsky, Y., Vibration of plates in contact with viscous fluid: extension of Lamb’s model, J. Sound. Vib., 326, 1-2, 332-339 (2009)
[30] Yang, Y.; Ng, C. T.; Kotousov, A.; Sohn, H.; Lim, H. J., Second harmonic generation at fatigue cracks by low-frequency lamb waves: experimental and numerical studies, Mech. Syst. Signal. Pr., 99, 760-773 (2018)
[31] Singh, A. K.; Chen, B. Y.; Tan, V. B.C.; Tay, T. E.; Lee, H. P., Finite element modeling of nonlinear acoustics/ultrasonics for the detection of closed delaminations in composites, Ultrasonics, 74, 89-98 (2017)
[32] Blanloeuil, P.; Rose, L. R.F.; Wang, C. H.; Veidt, M., Efficient simulations of the nonlinear wave modulation induced by a closed crack using local contact modelling, Procedia Eng., 188, 201-208 (2017)
[33] Moser, F.; Jacobs, L. J.; Qu, J., Modeling elastic wave propagation in waveguides with the finite element method, NDT & E. Int., 32, 4, 225-234 (1999)
[34] Melchor, J.; Parnell, W. J.; Bochud, N.; Peralta, L.; Rus, G., Damage prediction via nonlinear ultrasound: a micro-mechanical approach, Ultrasonics, 93, 145-155 (2019)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.