×

Multiscale topology optimization with direct \(\mathrm{FE}^2\). (English) Zbl 1536.74204

Summary: Together with the rapid development in manufacturing technology, multiscale structural topology optimization presents opportunities for the design of components at both the structural and sub-structural scales. A few works on topological optimization based on \(\mathrm{FE}^2\) computational homogenization to concurrently evolve the structure and sub-structure have been reported. However, significant expertise and coding are required in the conventional implementation of \(\mathrm{FE}^2\). It is shown that multiscale \(\mathrm{FE}^2\) optimization can be readily implemented on commercial finite element codes using the Direct \(\mathrm{FE}^2\) approach. The multiscale analysis is carried out as a single topology optimization job on commercial FE software. Numerical example problems are solved using ABAQUS to demonstrate the proposed method for stiffness optimization. It is shown that Direct \(\mathrm{FE}^2\) optimization takes only a fraction of the computational time required for optimization with a fine mesh and yet gives comparable optimized stiffness.

MSC:

74P15 Topological methods for optimization problems in solid mechanics
74S05 Finite element methods applied to problems in solid mechanics
Full Text: DOI

References:

[1] Thompson, M. K.; Moroni, G.; Vaneker, T.; Fadel, G.; Campbell, R. I.; Gibson, I.; Bernard, A.; Schulz, J.; Graf, P.; Ahuja, B.; Martina, F., Design for additive manufacturing: trends, opportunities, considerations, and constraints. CIRP Ann., 2, 737-760 (2016)
[2] Plocher, J.; Panesar, A., Review on design and structural optimisation in additive manufacturing: towards next-generation lightweight structures. Mater. Des. (2019)
[3] Bendsøe, M. P.; Kikuchi, N., Generating optimal topologies in structural design using a homogenization method. Comput. Methods Appl. Mech. Eng., 2, 197-224 (1988) · Zbl 0671.73065
[4] Sigmund, O., A 99 line topology optimization code written in Matlab. Struct. Multidiscip. Optim., 120-127 (2001)
[5] Andreassen, E.; Clausen, A.; Schevenels, M.; Lazarov, B. S.; Sigmund, O., Efficient topology optimization in MATLAB using 88 lines of code. Struct. Multidiscip. Optim., 1-16 (2011) · Zbl 1274.74310
[6] Rietz, A., Sufficiency of a finite exponent in SIMP (power law) methods. Struct. Multidiscip. Optim., 2, 159-163 (2001)
[7] Stolpe, M.; Svanberg, K., An alternative interpolation scheme for minimum compliance topology optimization. Struct. Multidiscip. Optim., 2, 116-124 (2001)
[8] Wang, M. Y.; Wang, X.; Guo, D., A level set method for structural topology optimization. Comput. Methods Appl. Mech. Eng., 1/2, 227-246 (2003) · Zbl 1083.74573
[9] Allaire, G.; Jouve, F.; Toader, A. M., Structural optimization using sensitivity analysis and a level-set method. J. Comput. Phys., 1, 363-393 (2004) · Zbl 1136.74368
[10] Challis, V. J., A discrete level-set topology optimization code written in Matlab. Struct. Multidiscip. Optim., 453-464 (2010) · Zbl 1274.74322
[11] Sethian, J. A.; Wiegmann, A., Structural boundary design via level set and immersed interface methods. J. Comput. Phys., 2, 489-528 (2000) · Zbl 0994.74082
[12] Xie, Y. M.; Steven, G. P., A simple evolutionary procedure for structural optimization. Comput. Struct., 5, 885-896 (1993)
[13] Huang, X. D.; Xie, Y. M.; Meron, B. M.C., A new algorithm for bi-directional evolutionary structural optimization. JSME Int. J. Ser. C, 4, 1091-1099 (2006)
[14] Huang, X. D.; Xie, Y. M., A further review of ESO type methods for topology optimization. Struct. Multidiscip. Optim., 671-683 (2010)
[15] Bendsøe, M. P., Optimal shape design as a material distribution problem. Struct. Optim., 193-202 (1989)
[16] Zhou, M.; Rozvany, G. I.N., The COC algorithm, Part II: topological, geometrical and generalized shape optimization. Comput. Methods Appl. Mech. Eng., 1-3, 309-336 (1991)
[17] Mlejnek, H. P., Some aspects of the genesis of structures. Struct. Optim., 64-69 (1992)
[18] Wu, J.; Sigmund, O.; Groen, J. P., Topology optimization of multi-scale structures: a review. Struct. Multidiscip. Optim., 1455-1480 (2021)
[19] Allaire, G., Shape Optimization by the Homogenization Method (2002), Springer · Zbl 0990.35001
[20] Traff, E.; Sigmund, O.; Groen, J. P., Simple single-scale microstructures based on optimal rank-3 laminates. Struct. Multidiscip. Optim., 1021-1031 (2019)
[21] Li, S.; Hou, S. J., Two-scale concurrent optimization of composites with ellipticalinclusions under microstress constraints within the \(FE^2\) framework. Comput. Struct. (2023)
[22] Nakshatrala, P. B.; Tortorelli, D. A.; Nakshatrala, K. B., Nonlinear structural design using multiscale topology optimization. Part I: static formulation. Comput. Methods Appl. Mech. Eng., 167-176 (2013) · Zbl 1286.74077
[23] Nakshatrala, P. B.; Tortorelli, D. A., Nonlinear structural design using multiscale topology optimization. Part II: transient formulation. Comput. Methods Appl. Mech. Eng., 605-618 (2016) · Zbl 1425.74377
[24] Xia, L.; Breitkopf, P., A reduced multiscale model for nonlinear structural topology optimization. Comput. Methods Appl. Mech. Eng., 117-134 (2014) · Zbl 1423.74771
[25] Xia, L.; Breitkopf, P., Concurrent topology optimization design of material and structure within \(FE^2\) nonlinear multiscale analysis framework. Comput. Methods Appl. Mech. Eng., 524-542 (2014) · Zbl 1423.74770
[26] Feyel, F., Multiscale \(FE^2\) elastoviscoplastic analysis of composite structures. Comput. Mater. Sci., 344-354 (1999)
[27] Smit, R. J.M.; Brekelmans, W. A.M.; Meijer, H. E.H., Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Comput. Methods Appl. Mech. Eng., 1-2, 181-192 (1998) · Zbl 0967.74069
[28] Feyel, F.; Chaboche, J. L., \(FE^2\) multiscale approach for modelling the elastoviscoplastic behaviour of long fiber SiC/Ti composite materials. Comput. Methods Appl. Mech. Eng., 309-330 (2000) · Zbl 0993.74062
[29] Feyel, F., A multilevel finite element method \((FE^2)\) to describe the response of highly non-linear structures using generalized continua. Comput. Methods Appl. Mech. Eng., 3233-3244 (2003) · Zbl 1054.74727
[30] Tan, V. B.C.; Raju, K.; Lee, H. P., Direct \(FE^2\) for concurrent multilevel modelling of heterogeneous structures. Comput. Methods Appl. Mech. Eng. (2020)
[31] Raju, K.; Zhi, J.; Su, Z. C.; Tay, T. E.; Tan, V. B.C., Analysis of nonlinear shear and damage behaviour of angle-ply laminates with direct \(FE^2\). Compos. Sci. Technol. (2021)
[32] Zhi, J.; Poh, L. H.; Tay, T. E.; Tan, V. B.C., Direct \(FE^2\) modeling of heterogeneous materials with a micromorphic computational homogenization framework. Comput. Methods Appl. Mech. Eng. (2022)
[33] Xu, J. H.; Li, P.; Poh, L. H.; Zhang, Y. Y.; Tan, V. B.C., Direct \(FE^2\) for concurrent multilevel modelling modeling of heterogeneous thin plate structures. Comput. Methods Appl. Mech. Eng. (2022)
[34] Yeoh, K. M.; Poh, L. H.; Tay, T. E.; Tan, V. B.C., Multiscale modelling of sandwich structured composites using direct \(FE^2\). Compos. Sci. Technol. (2023)
[35] Liu, K.; Meng, L.; Zhao, A.; Wang, Z. G.; Chen, L. L.; Li, P., A hybrid direct \(FE^2\) method for modeling of multiscale materials and structures with strain localization. Comput. Methods Appl. Mech. Eng. (2023)
[36] Bendsøe, M. P., Optimization of Structural Topology, Shape and Material (1995), Springer · Zbl 0822.73001
[37] Bendsøe, M. P.; Sigmund, O., Material interpolation schemes in topology optimization. Arch. Appl. Mech., 9-10, 635-654 (1999) · Zbl 0957.74037
[38] Sigmund, O., Morphology-based black and white filters for topology optimization. Struct. Multidiscip. Optim., 401-424 (2007)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.