×

Asymptotic expansions for the alternating Hurwitz zeta function and its derivatives. (English) Zbl 07837281

The alternating Hurwitz (or Hurwitz-type Euler) zeta function \(\zeta_E (s, q)\) is defined by \[ \zeta_E (s, q) = \sum_{n = 0}^\infty \frac{(- 1)^n}{(n + q)^s}, \] for \(\operatorname{Re} (s)>0\) and \(q\neq 0, -1, -2, \ldots\) One can see that \(\zeta_E (s, q)\) can be analytically continued to the entire \(s\)-plane without any pole and it satisfies the following identities: \[ \zeta_E (s, q+1) + \zeta_E (s, q)= q^{-s} \] and \[ \frac{\partial}{\partial q}\zeta_E (s, q)=-s \zeta_E (s+1, q). \] In this paper under review, the authors are inspired from the work of G. Nemes [Proc. R. Soc. Lond., A, Math. Phys. Eng. Sci. 473, No. 2203, Article ID 20170363, 16 p. (2017; Zbl 1404.33018)] and they first obtain the following asymptotic expansion of \(\zeta_E (s, q)\): \[ \zeta_E (s, q) \sim \frac{1}{2} q^{- s} + \frac{1}{4} sq^{- s - 1} - \frac{1}{2} q^{-s} \sum_{k = 1}^\infty \frac{E_{2 k + 1} (0)}{(2 k + 1) !} \frac{(s)_{2 k + 1}}{q^{2 k + 1}}, \] as \(|q|\to \infty\) in the sector \(|\arg q|\leq \pi-\delta\), with \(s\) and \(\delta>0\) being fixed, where \(E_{2k+1}(0)\) are the special values of odd-order Euler polynomials at \(0\).
They also derive the asymptotic expansions for the higher order derivatives of \(\zeta_E(s,q)\) with respect to its first argument \[ \zeta_E^{(m)}(s, q) \equiv \frac{\partial^m}{\partial s^m} \zeta_E(s, q), \] as \(|q|\to \infty\) in the sector \(|\arg q|\leq \pi-\delta\), with \(s\) and \(\delta>0\) being fixed (see Theorems 3.9 and 3.14). Finally, they prove a new exact series representation of the convergent expansion of \(\zeta_E(s, q)\). Notice that a similar representation was originally established by G. Nemes [Proc. R. Soc. Lond., A, Math. Phys. Eng. Sci. 473, No. 2203, Article ID 20170363, 16 p. (2017; Zbl 1404.33018)] for the Hurwitz zeta function \(\zeta(s, q)\).

MSC:

11M35 Hurwitz and Lerch zeta functions
11M06 \(\zeta (s)\) and \(L(s, \chi)\)
33B15 Gamma, beta and polygamma functions

Citations:

Zbl 1404.33018

Software:

DLMF

References:

[1] (Abramowitz, M.; Stegun, I., Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables, 1972, Dover: Dover New York) · Zbl 0543.33001
[2] Alzer, H.; Choi, J., Four parametric linear Euler sums, J. Math. Anal. Appl., 484, 1, Article 123661 pp., 2020 · Zbl 1437.11123
[3] Borwein, J. M.; Borwein, P. B.; Dilcher, K., Pi, Euler numbers, and asymptotic expansions, Am. Math. Mon., 96, 8, 681-687, 1989 · Zbl 0711.11009
[4] Burić, T.; Elezović, N., New asymptotic expansions of the quotient of gamma functions, Integral Transforms Spec. Funct., 23, 5, 355-368, 2012 · Zbl 1247.33003
[5] Candelpergher, B., Ramanujan Summation of Divergent Series, Lecture Notes in Mathematics, vol. 2185, 2017, Springer: Springer Cham · Zbl 1386.40001
[6] Chen, C.-P.; Paris, R. B., Inequalities, asymptotic expansions and completely monotonic functions related to the gamma function, Appl. Math. Comput., 250, 514-529, 2015 · Zbl 1328.33001
[7] Chen, C.-P.; Paris, R. B., Some results associated with Bernoulli and Euler numbers with applications, preprint
[8] Choi, J.; Srivastava, H. M., The multiple Hurwitz zeta function and the multiple Hurwitz-Euler eta function, Taiwan. J. Math., 15, 2, 501-522, 2011 · Zbl 1273.11133
[9] Cohen, H., Number Theory Vol. II: Analytic and Modern Tools, Graduate Texts in Mathematics, vol. 240, 2007, Springer: Springer New York · Zbl 1119.11002
[10] Can, M.; Dağlı, M. C., Character analogue of the Boole summation formula with applications, Turk. J. Math., 41, 5, 1204-1223, 2017 · Zbl 1424.65002
[11] Coffey, M. W., On some series representations of the Hurwitz zeta function, J. Comput. Appl. Math., 216, 1, 297-305, 2008 · Zbl 1134.11032
[12] Deninger, C., On the analogue of the formula of Chowla and Selberg for real quadratic fields, J. Reine Angew. Math., 351, 171-191, 1984 · Zbl 0527.12009
[13] Ekera, M., On the success probability of quantum order finding
[14] Elezović, N., Asymptotic expansions of gamma and related functions, binomial coefficients, inequalities and means, J. Math. Inequal., 9, 4, 1001-1054, 2015 · Zbl 1329.41039
[15] Elizalde, E., An asymptotic expansion for the first derivative of the generalized Riemann zeta function, Math. Comput., 47, 175, 347-350, 1986 · Zbl 0603.10040
[16] Elizalde, E., A simple recurrence for the higher derivatives of the Hurwitz zeta function, J. Math. Phys., 34, 7, 3222-3226, 1993 · Zbl 0779.11037
[17] Elizalde, E., Ten Physical Applications of Spectral Zeta Functions, Lecture Notes in Physics, vol. 855, 2012, Springer: Springer Heidelberg · Zbl 1250.81004
[18] Elizalde, E.; Romeo, A., An integral involving the generalized zeta function, Int. J. Math. Math. Sci., 13, 453-460, 1990 · Zbl 0708.11039
[19] Erdélyi, A., Asymptotic Expansions, 1956, Dover Publications, Inc.: Dover Publications, Inc. New York · Zbl 0070.29002
[20] Graham, R. L.; Knuth, D. E.; Patashnik, O., Concrete Mathematics, 1994, Addison-Wesley: Addison-Wesley Reading, MA · Zbl 0836.00001
[21] Hardy, G. H., Divergent Series, 1949, Oxford University Press: Oxford University Press London, UK · Zbl 0032.05801
[22] Hu, S.; Kim, D.; Kim, M.-S., On reciprocity formula of Apostol-Dedekind sum with quasi-periodic Euler functions, J. Number Theory, 162, 54-67, 2016 · Zbl 1402.11064
[23] Hu, S.; Kim, D.; Kim, M.-S., Special values and integral representations for the Hurwitz-type Euler zeta functions, J. Korean Math. Soc., 55, 1, 185-210, 2018 · Zbl 1391.33003
[24] Hu, S.; Kim, M.-S., On Dirichlet’s lambda function, J. Math. Anal. Appl., 478, 2, 952-972, 2019 · Zbl 1472.11075
[25] Hu, S.; Kim, M.-S., On the Stieltjes constants and gamma functions with respect to alternating Hurwitz zeta functions, J. Math. Anal. Appl., 509, 1, Article 125930 pp., 2022 · Zbl 1489.11134
[26] Jordan, C., Calculus of Finite Differences, 1965, Chelsea Publishing Co.: Chelsea Publishing Co. New York, Introduction by Harry C. Carver · Zbl 0154.33901
[27] Kim, M.-S., Some series involving the Euler zeta function, Turk. J. Math., 42, 3, 1166-1179, 2018 · Zbl 1424.11132
[28] Kim, M.-S.; Hu, S., On p-adic diamond-Euler log gamma functions, J. Number Theory, 133, 4233-4250, 2013 · Zbl 1364.11149
[29] Knopp, K., Theory and Application of Infinite Series, 1951, Hafner: Hafner New York, R.C. Young, translator · JFM 54.0222.09
[30] Kostin, A. B.; Sherstyukov, V. B., Asymptotic behavior of remainders of special number series, J. Math. Sci. (N.Y.), 251, 6, 814-838, 2020, Problems in mathematical analysis, No. 107 · Zbl 1476.11049
[31] Lampret, V., Simple derivation of the Euler-Boole type summation formula and examples of its use, Mediterr. J. Math., 19, 2, Article 77 pp., 2022 · Zbl 1489.65003
[32] Luke, Y. L., The Special Functions and Their Approximations, Vol. I, Mathematics in Science and Engineering, vol. 53, 1969, Academic Press: Academic Press New York-London · Zbl 0193.01701
[33] Magnus, W.; Oberhettinger, F.; Soni, R. P., Formulas and Theorems for the Special Functions of Mathematical Physics, Die Grundlehren der mathematischen Wissenschaften, vol. 52, 1966, Springer-Verlag New York, Inc.: Springer-Verlag New York, Inc. New York, viii+508 pp. · Zbl 0143.08502
[34] Min, J., Zeros and special values of Witten zeta functions and Witten L-functions, J. Number Theory, 134, 240-257, 2014 · Zbl 1317.11087
[35] Nemes, G., Error bounds for the asymptotic expansion of the Hurwitz zeta function, Proc. A., 473, 2203, Article 20170363 pp., 2017 · Zbl 1404.33018
[36] Nist, Digital library of mathematical functions, available at
[37] Nörlund, N. E., Vorlesungen über Differenzenrechnung, 1954, Springer-Verlag: Springer-Verlag Berlin: Chelsea Publishing Company: Springer-Verlag: Springer-Verlag Berlin: Chelsea Publishing Company Bronx, New York, Reprinted by · JFM 50.0315.02
[38] (Olver, F. W.J.; Olde Daalhuis, A. B.; Lozier, D. W.; Schneider, B. I.; Boisvert, R. F.; Clark, C. W.; Miller, B. R.; Saunders, B. V., 2014 NIST Digital Library of Mathematical Functions, 2016), (Release 1.0.14 of 21 Dec 2016)
[39] Rudaz, S., Note on asymptotic series expansions for the derivative of the Hurwitz zeta function and related functions, J. Math. Phys., 31, 12, 2832-2834, 1990 · Zbl 0729.11043
[40] Seri, R., A non-recursive formula for the higher derivatives of the Hurwitz zeta function, J. Math. Anal. Appl., 424, 1, 826-834, 2015 · Zbl 1303.11104
[41] Sun, Z.-W., Introduction to Bernoulli and Euler polynomials, A lecture given in Taiwan on June 6, 2002
[42] Srivastava, H. M.; Choi, J., Zeta and q-Zeta Functions and Associated Series and Integrals, 2012, Elsevier Science Publishers: Elsevier Science Publishers Amsterdam, London and New York · Zbl 1239.33002
[43] Srivastava, H. M.; Kurt, B.; Simsek, Y., Some families of Genocchi type polynomials and their interpolation functions, Integral Transforms Spec. Funct., 23, 12, 919-938, 2012 · Zbl 1253.05021
[44] Temme, N. M., Special Functions, An Introduction to the Classical Functions of Mathematical Physics, 1996, A Wiley-Interscience Publication, John Wiley & Sons, Inc.: A Wiley-Interscience Publication, John Wiley & Sons, Inc. New York · Zbl 0856.33001
[45] Weil, A., Number Theory, An Approach Through History, from Hammurapi to Legendre, 1984, Birkhäuser Boston, Inc.: Birkhäuser Boston, Inc. Boston, MA · Zbl 0531.10001
[46] Williams, K. S.; Zhang, N. Y., Special values of the Lerch zeta function and the evaluation of certain integrals, Proc. Am. Math. Soc., 119, 1, 35-49, 1993 · Zbl 0785.11046
[47] Wong, R., Asymptotic Approximations of Integrals, Classics in Applied Mathematics, vol. 34, 2001, Society for Industrial and Applied Mathematics (SIAM): Society for Industrial and Applied Mathematics (SIAM) Philadelphia, PA, Corrected reprint of the 1989 original · Zbl 1078.41001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.