×

Analysis of a stochastic ratio-dependent one-predator and two-mutualistic-preys model with Markovian switching and Holling type III functional response. (English) Zbl 1418.92093

Summary: In this paper, we propose a stochastic ratio-dependent one-predator and two-mutualistic-preys model perturbed by white and telegraph noise. By the \(M\)-matrix analysis and Lyapunov functions, sufficient conditions of stochastic permanence and extinction are established. These conditions are all dependent on the parameters of subsystems and the stationary probability distribution of the Markov chain. We also obtain the boundary of limit superior and inferior of the average in time of the solution under stochastic permanence. Finally, we give two examples and numerical simulations to illustrate main results.

MSC:

92D25 Population dynamics (general)
34C60 Qualitative investigation and simulation of ordinary differential equation models
34F05 Ordinary differential equations and systems with randomness
60H10 Stochastic ordinary differential equations (aspects of stochastic analysis)
34D20 Stability of solutions to ordinary differential equations

References:

[1] May, RM: Theoretical Ecology: Principles and Applications. Saunders, Philadelphia (1976)
[2] Dean, AM: A simple model of mutualism. Am. Nat. 121, 409-417 (1983). http://www.jstor.org/stable/2461158 · doi:10.1086/284069
[3] Wolin, CL, Lawlor, LR: Models of facultative mutualism: density effects. Am. Nat. 124, 843-862 (1984). http://www.jstor.org/stable/2461304 · doi:10.1086/284320
[4] Boucher, DH: Lotka-Volterra models of mutualism and positive density-dependence. Ecol. Model. 27, 251-270 (1985). doi:10.1016/0304-3800(85)90006-7 · doi:10.1016/0304-3800(85)90006-7
[5] Wright, DH: A simple stable model of mutualism incorporating handling time. Am. Nat. 134, 664-667 (1989). http://www.jstor.org/stable/2462066 · doi:10.1086/285003
[6] García-Algarra, J, Galeano, J, Pastor, JM, Iriondo, JM, Ramasco, JJ: Rethinking the logistic approach for population dynamics of mutualistic interactions. J. Theor. Biol. 363, 332-343 (2014). doi:10.1016/j.jtbi.2014.08.039 · Zbl 1309.92067 · doi:10.1016/j.jtbi.2014.08.039
[7] Holling, CS: Some characteristics of simple types of predation and parasitism. Can. Entomol. 91, 385-398 (1959). doi:10.4039/Ent91385-7 · doi:10.4039/Ent91385-7
[8] Jang, SR-J: Dynamics of herbivore-plant-pollinator models. J. Math. Biol. 44, 129-149 (2002). doi:10.1007/s002850100117 · Zbl 0991.92031 · doi:10.1007/s002850100117
[9] Kar, TK, Ghorai, A: Dynamic behaviour of a delayed predator-prey model with harvesting. Appl. Math. Comput. 217, 9085-9104 (2011). doi:10.1016/j.amc.2011.03.126 · Zbl 1215.92065 · doi:10.1016/j.amc.2011.03.126
[10] Pal, PJ, Mandal, PK, Lahiri, KK: A delayed ratio-dependent predator-prey model of interacting populations with Holling type III functional response. Nonlinear Dyn. 76, 201-220 (2014). doi:10.1007/s11071-013-1121-3 · Zbl 1319.92047 · doi:10.1007/s11071-013-1121-3
[11] Zu, L, Jiang, D, O’Regan, D: Conditions for persistence and ergodicity of a stochastic Lotka-Volterra predator-prey model with regime switching. Commun. Nonlinear Sci. Numer. Simul. 29, 1-11 (2015). doi:10.1016/j.cnsns.2015.04.008 · Zbl 1510.92195 · doi:10.1016/j.cnsns.2015.04.008
[12] Arditi, R, Ginzburg, LR: Coupling in predator-prey dynamics: ratio-dependence. J. Theor. Biol. 139, 311-326 (1989). doi:10.1016/S0022-5193(89)80211-5 · doi:10.1016/S0022-5193(89)80211-5
[13] Arditi, R, Perrin, N, Saïah, H: Functional responses and heterogeneities: an experimental test with cladocerans. Oikos 60, 69-75 (1991). doi:10.2307/3544994 · doi:10.2307/3544994
[14] Arditi, R, Ginzburg, LR, Akcakaya, HR: Variation in plankton densities among lakes: a case for ratio-dependent predation models. Am. Nat. 138, 1287-1296 (1991). http://www.jstor.org/stable/2462524 · doi:10.1086/285286
[15] Arditi, R, Saïah, H: Empirical evidence of the role of heterogeneity in ratio-dependent consumption. Ecology 73, 1544-1551 (1992). http://www.jstor.org/stable/1940007 · doi:10.2307/1940007
[16] Akçakaya, HR, Arditi, R, Ginzburg, LR: Ratio-dependent predation: an abstraction that works. Ecology 76, 995-1004 (1995). http://www.jstor.org/stable/1939362 · doi:10.2307/1939362
[17] Kuang, Y, Beretta, E: Global qualitative analysis of a ratio-dependent predator-prey system. J. Math. Biol. 36, 389-406 (1998). doi:10.1007/s002850050105 · Zbl 0895.92032 · doi:10.1007/s002850050105
[18] Ouyang, M, Li, X: Permanence and asymptotical behavior of stochastic prey-predator system with Markovian switching. Appl. Math. Comput. 266, 539-559 (2015). doi:10.1016/j.amc.2015.05.083 · Zbl 1410.34144 · doi:10.1016/j.amc.2015.05.083
[19] DeAngelis, DL: Dynamics of Nutrient Cycling and Food Webs. Springer, Berlin (1992). doi:10.1007/978-94-011-2342-6 · doi:10.1007/978-94-011-2342-6
[20] Wang, X, Peng, M, Liu, X: Stability and Hopf bifurcation analysis of a ratio-dependent predator-prey model with two time delays and Holling type III functional response. Appl. Math. Comput. 268, 496-508 (2015). doi:10.1016/j.amc.2015.06.108 · Zbl 1410.37082 · doi:10.1016/j.amc.2015.06.108
[21] Mougi, A, Kondoh, M: Stability of competition-antagonism-mutualism hybrid community and the role of community network structure. J. Theor. Biol. 360, 54-58 (2014). doi:10.1016/j.jtbi.2014.06.030 · Zbl 1343.92544 · doi:10.1016/j.jtbi.2014.06.030
[22] Jana, D, Agrawal, R, Upadhyay, RK: Dynamics of generalist predator in a stochastic environment: effect of delayed growth and prey refuge. Appl. Math. Comput. 268, 1072-1094 (2015). doi:10.1016/j.amc.2015.06.098 · Zbl 1410.34136 · doi:10.1016/j.amc.2015.06.098
[23] Liu, M, Mandal, PS: Dynamical behavior of a one-prey two-predator model with random perturbations. Commun. Nonlinear Sci. Numer. Simul. 28, 123-137 (2015). doi:10.1016/j.cnsns.2015.04.010 · Zbl 1510.92169 · doi:10.1016/j.cnsns.2015.04.010
[24] Slatkin, M: The dynamics of a population in a Markovian environment. Ecology 59, 249-256 (1978). http://www.jstor.org/stable/1936370 · doi:10.2307/1936370
[25] Luo, Q, Mao, X: Stochastic population dynamics under regime switching. J. Math. Anal. Appl. 334, 69-84 (2007). doi:10.1016/j.jmaa.2006.12.032 · Zbl 1113.92052 · doi:10.1016/j.jmaa.2006.12.032
[26] Li, X, Gray, A, Jiang, D, Mao, X: Sufficient and necessary conditions of stochastic permanence and extinction for stochastic logistic populations under regime switching. J. Math. Anal. Appl. 376, 11-28 (2011). doi:10.1016/j.jmaa.2010.10.053 · Zbl 1205.92058 · doi:10.1016/j.jmaa.2010.10.053
[27] Mao, X, Yuan, C: Stochastic Differential Equations with Markovian Switching. Imperial College Press, London (2006) · Zbl 1126.60002 · doi:10.1142/p473
[28] Li, X, Mao, X, Shen, Y: Approximate solutions of stochastic differential delay equations with Markovian switching. J. Differ. Equ. Appl. 16, 195-207 (2010). doi:10.1080/10236190802695456 · Zbl 1187.60046 · doi:10.1080/10236190802695456
[29] Liu, M, Bai, C: Global asymptotic stability of a stochastic delayed predator-prey model with Beddington-DeAngelis functional response. Appl. Math. Comput. 226, 581-588 (2014). doi:10.1016/j.amc.2013.10.052 · Zbl 1354.92067 · doi:10.1016/j.amc.2013.10.052
[30] Kloeden, PE, Shardlow, T: The Milstein scheme for stochastic delay differential equations without using anticipative calculus. Stoch. Anal. Appl. 30, 181-202 (2012). doi:10.1080/07362994.2012.628907 · Zbl 1247.65005 · doi:10.1080/07362994.2012.628907
[31] Parshad, RD, Quansah, E, Black, K, Upadhyay, RK, Tiwari, SK, Kumari, N: Long time dynamics of a three-species food chain model with Allee effect in the top predator. Comput. Math. Appl. 71, 503-528 (2016). doi:10.1016/j.camwa.2015.12.015 · Zbl 1443.92166 · doi:10.1016/j.camwa.2015.12.015
[32] Liu, Q, Jiang, D, Shi, N, Hayat, T, Alsaedi, A: Stochastic mutualism model with Lévy jumps. Commun. Nonlinear Sci. Numer. Simul. 43, 78-90 (2017). doi:10.1016/j.cnsns.2016.05.003 · Zbl 1465.92139 · doi:10.1016/j.cnsns.2016.05.003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.